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Let G be a (simple, undirected, finite) graph, denote the order ofG by |G|, and letSn denote the set
of real symmetricn × n matrices. We use the notation,G(A), to describethe graph ofA, and by this we
mean the graph on vertices{1, 2, . . . , n} and withij an edge ofG(A) if and only if i 6= j andaij 6= 0. The
minimum rankof G is

mr(G) = min{rank(A) : A ∈ Sn andG(A) = G}.

Themaximum nullityof a graphG (overR) is defined to be

M(G) = max{dim (ker(A)) : A ∈ Sn andG(A) = G}.

Clearly,
mr(G) + M(G) = |G|.

Two other families of matrices associated with a graph are subsets of the realn× n positive semidefinite
matrices, which we denote byPSDn, and the complexn×n positive semidefinite matrices, which we denote
by HPSDn. Theset of symmetric positive semidefinite matrices of graphG is

SD(G) = {A ∈ PSD|G| : G(A) = G},

and theset of Hermitian positive semidefinite matrices of graphG is

HSD(G) = {A ∈ HPSD|G| : G(A) = G}.

Then we define theminimum semidefinite rank of a graphG, denoted bymsr(G), the smallest rank over
all matrices in SD(G). It is clear thatmr(G) ≤ msr(G). Along these lines, we defineM+(G) to be the
maximum nullity over all matrices in SD(G). It is evident thatM(G) ≥ M+(G), for all graphsG.

———————————————————-

During the week at BIRS our team considered a number of important open problems regarding minimum
rank and minimum semidefinite rank. One such issue, which is of current interest, was to consider the class
of graphs known as outerplanar. A graph isouterplanarif it has a crossing-free embedding in the plane such
that all vertices lie on the same face. It is worth noting that all trees and all unicyclic graphs are outerplanar.

Associated with any graph is an important graph parameter, known as the path cover number. Thepath
cover numberof a simple graphG, P (G), is the minimum number of vertex disjoint paths occurring as
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induced subgraphs ofG that cover all of the vertices ofG. It is known thatM(T ) = P (T ) for every (simple)
treeT [2]. Sinkovic has recently demonstrated that for a (simple) outerplanar graphG, M(G) ≤ P (G) and
has given a family of outerplanar graphs for which equality holds [5].

One of our main objectives for the week was to gain a better understanding on the possible connections
between the minimum rank and minimum semidefinite rank of a graph, and this is exactly what we accom-
plished in the case of outerplanar graphs. We began by discovering a new graph parameter, known as the tree
cover number and used it in connection withM+(G) whenG is outerplanar.

The tree cover numberof a graphG, possibly with multiple edges but no loops, denotedT (G), is the
minimum number of vertex disjoint simple trees occurring as induced subgraphs ofG that cover all of the
vertices ofG.

Our main result is a complete characterization of the maximum nullity over all positive semidefinite
matrices whose graph is outerplanar. Namely, we proved thatM+(G) = T (G), for all outerplanar graphs
G. This is a significant result, as like the case of trees, it establishes, a direct link between the algebraic
quantity, nullity, to a combinatorial quantity, namely the tree cover number. Moreover, this result verifies an
equation betweenmsr and a graph parameter. The main tool used in the proof of this theorem is the notion
of orthogonal removal of a vertex, which was developed in the context of finding the minimum semidefinite
rank of chordal multigraphs [1].

We also studied the tree cover number in general, and compared with other known graph parameters and
to M as a completeness exercise. We were also faced with a number of interesting open questions, such as
studying the graph complement conjecture for outerplanar graphs, along with many other issues.

——————————————————-

Given a setX of n nonzero column vectors inCd, X = {x1, . . . ,xn}, letX be the matrix[ x1 . . . xn ].
ThenX∗X is a psd matrix called theGram matrixof X with regard to the Euclidean inner product. Its associ-
ated graphG hasn vertices{v1, . . . , vn} corresponding to the vectors{x1, . . . ,xn}, and edges corresponding
to nonzero inner products among those vectors. By therank of X, we mean the dimension of the span of the
vectors inX, which is equal to the rank ofX∗X. Consequently,X is called avector representationof G.
Vector representations have been a key tool in recent advances in minimum semidefinite rank problems (see,
for example, [2, 3]).

At BIRS, it was shown that vector representations can be used in conjunction with unitary matrices to
solve or give new approaches to open problems:

Given a vector representation of a graphG, let X be the matrix mentioned above. Let

P =
[

X
E

]
,

whereE is a matrix whose zero/nonzero pattern is that of the edge-vertex incidence matrix ofG. We first
notice that, since the columns ofX give a vector representation ofG, and since the rows ofE have only two
nonzero entries each corresponding to a nonzero inner product of columns ofX, the nonzero entries ofE can
be specified so that the columns ofP are pairwise orthogonal. After normalizing the columns ofP , P may
be completed to a unitary matrix

V =
[

X ?
E L

]
,

where the rows ofL must then be a vector representation of the line graph ofG, L(G). Inspecting the sizes
of the various blocks ofV , this gives the following result, obtained at BIRS this year: For any graphG,
|G| −msr(G) ≤ |L(G)| −msr(L(G)).

Written slightly differently as

msr(L(G)) ≤ |L(G)| − (|G| −msr(G)),

this is reminiscent of theδ-conjecture, one of the two most well-known open conjectures in minimum rank:
For any graphG, msr(G) ≤ |G| − δ(G), whereδ(G) is the smallest degree among the vertices ofG.
Significant progress was made in special cases of theδ-conjecture at BIRS: including a proof of the conjecture
whenδ ≤ 3. Further, it was conjectured that a stronger result is true, namely, thatM+(G) ≥ δ̃, whereδ̃ is
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the maximum degree of a vertexv that has minimum degree among its neighbors, andD(v) (i.e., the graph
obtained fromG by deletingv and all of the neighbors ofv) is connected.

Another well-known open conjecture is theGraph Complement Conjecture: For any graphG, if G is the
complement ofG, thenmsr(G) + msr(G) ≤ |G|+ 2.

As noted at BIRS, both the graph complement conjecture (GCC) and theδ-conjecture can be transformed
into associated unitary matrix completion problems. This idea is similar to one previously explored in the
context of finding the msr of bipartite graphs [4]. Here, we will demonstrate how to approach GCC:

Let X be a matrix whose columns form a minimal vector representation ofG. Construct a matrixE
whose rows have exactly two nonzero entries, and where each row ofE corresponds to either an edge ofG

or an edge ofG. ThusE will be a

(
|G|
2

)
× |G| matrix. Let

M =
[

X
E

]
.

Choose the nonzero entries ofE, row by row, so that if the columns ofX corresponding to the two nonzero
entries of a row inE are not orthogonal, then the corresponding columns ofM are, and vice-versa. At the end
of this process, the columns ofM will be a vector representation ofG, but most likely not a useful one, as it
will no doubt have a high rank. Now, find a matrixN so that the rows of the matrix

[
M N

]
are pairwise

orthogonal and all have the same length (we discuss how to do this below). Having done so, normalize the
rows of

[
M N

]
, and extend to a unitary matrix

U =
[

M N
V ?

]
.

By construction, the columns ofV give a vector representation ofG with rank bounded by a function of the

size ofN . In particular, if such anN can be selected to have

(
|G|
2

)
+ 2 columns, then

msr(G) ≤ |G|+ 2−msr(G),

establishing GCC. If any suchN must have more than

(
|G|
2

)
+2 columns for a particular graph, then that

graph will give a counterexample for GCC.
We note that such anN may always be found, as the question of simultaneously normalizing and orthog-

onalizing a set of vectors can be phrased as the matrix equation

M∗M + N∗N = cI,

whereM is known. SinceM∗M is a positive semidefinite matrix, choosing anyc > max σ(M∗M) (where
σ is the set of eigenvalues) will makecI −M∗M a positive semidefinite matrix, and guarantee the existence
of anN with N∗N = cI −M∗M .

We can phrase this question, then, in a number of different but equivalent ways: Given a zero/nonzero
pattern, what is the size of the smallest pattern containing the original that is the pattern of a unitary matrix?
What is the largest multiplicity of the largest eigenvalue of a Hermitian matrix with given zero/nonzero
pattern? What is the smallest rank matrixN that will solve the matrix equationM∗M + N∗N = cI for
givenM and arbitraryc?
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