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1 Overview of the Field
The ∂-method in inverse scattering enables, in principle at least, an explicit solution to certain completely
integrable, dispersive nonlinear equations in two space dimensions. The ∂-method also has potential applica-
tion to problems arising in the study of random matrix models and orthogonal polynomials in the plane. The
following two examples indicate the directions open to exploration and the nature of the common, underlying
mathematical problem.

The Davey-Stewartson (DS) II equation. The DS II equation is a completely integrable model that de-
scribes monochromatic, weakly nonlinear waves in shallow water. The solution u gives the (complex) ampli-
tude u(x, y, t) of such a wave. The defocussing DS II equation is the system (ε > 0 is a parameter)

iεqt+2ε2
(
∂2 + ∂

2
)
q+(g+g)q = 0 and ∂g = −∂

(
|q|2
)
, ∂ :=

∂

∂z
, ∂ :=

∂

∂z
, z := x+iy. (1)

For the initial-value problem we fix an initial condition: q(x, y, 0) = q0(x, y). The elliptic equation for g is
to be solved subject to the condition that g → 0 as x, y →∞.

To solve by inverse scattering, suppose that q0 ∈ S(R2). There is a nonlinear map R taking q0 to a
function r0 ∈ S(R2), the scattering transform. The solution is constructed by solving the ∂-problem

∂kν(κ, σ) =
1

2
r0(κ, σ)e

−2iS(κ,σ)/εσ1ν(κ, σ), σ1 :=

(
0 1
1 0

)
, ∂k :=

∂

∂k
, k = κ+ iσ,

where ν is a 2-component vector that tends to (1, 0)T as k → ∞, and where S(κ, σ) := ={kz} + 2t<{k2}
is a real-valued phase function. The solution u(x, y, t) is then computed from the reconstruction formula

q(x, y, t) = 2 lim
k→∞

k ν2(κ, σ) =
1

πε

∫∫
R2

e2iS(κ,σ)/εr0(κ, σ)ν1(κ, σ) dκ dσ.

Moreover, the problem of computing the scattering transform mapR can be formulated also as a quite similar
∂-problem, but this time set in the complex z-plane. Thus, the technical core of this problem is the analysis
of a ∂-problem involving parameters z, t, and ε that enter in a singular fashion.

Normal Matrix Models. The joint probability measure of complex eigenvalues z1, . . . , zN for a unitary-
invariant ensemble of normal random N ×N matrices can be taken in the form

P (z1, . . . , zN )dm(z1) · · · dm(zN ) :=
1

ZN

∏
j 6=k

|zj − zk|2
N∏
n=1

e−NV (zn) dm(zn) (2)
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where V : C → R is a (confining) potential, ZN is the normalization constant (partition function), and
dm(z) is Lebesgue measure in the z-plane. As in Hermitian matrix models, the statistics of eigenvalues may
be studied through the associated monic orthogonal polynomials {Pn}∞n=0 defined by:∫

C
Pn(z)Pm(z)e−NV (z) dm(z) = hnδmn, hn > 0, Pn(z) = zn + · · · . (3)

These orthogonal polynomials can be equivalently obtained via the solution of a matrix ∂-problem in which
the matrix size N and degree n enter as parameters. Indeed, if Yn(z, z) denotes the 2× 2 matrix that satisfies

∂Yn(z, z) = Yn(z, z)

(
0 −e−NV (z)

0 0

)
then Pn(z) = Yn,11(z, z). To analyze the asymptotic distribution of eigenvalues as N → ∞ along with
the fine structure of local correlations, one needs information about Pn(z) for n as large as N , and in this
setting the ∂-problem is in principle well-suited to asymptotic analysis because the large parameters N and
n appear explicitly in the conditions on Yn. Thus, the details of eigenvalue statistics can be worked out if the
∂-problem can be analyzed accurately in the limit N,n → ∞. Again, the technical core of this problem is
the accurate asymptotic analysis of a ∂-problem involving large parameters.

The ∂ method is, potentially, as powerful a tool in these sets of related problems as the Riemann-Hilbert
method has proven to be in the study of completely integrable systems “in one space dimension” such as
the KdV, mKdV and NLS equations, random matrix distributions for symmetric, orthogonal, and unitary
matrices, and orthogonal polynomials on the circle or the line. The purpose of this Focussed Research Group
was to bring together researchers in completely integrable systems and dispersive equations, together with
experts in harmonic analysis and PDE, to better develop the ∂-methods.

2 Recent Developments and Open Problems
Dispersive nonlinear partial differential equations in two dimensions have been extensively studied in recent
years, both by PDE methods and inverse scattering methods. The former methods yield much stronger
local existence and well-posedness results than can be expected from inverse scattering methods, but the
latter promise to yield much more detailed behavior on semi-classical asymptotics and long-time behavior
if parameter dependence of solutions to the underlying ∂ problems can be controlled. Model equations
include the Davey-Stewartson (DS), Kadomtsev-Petviashvilli (KP), and Novikov-Veselov (NV) equations.
The ∂-method was developed by Fokas-Ablowitz [1, 2, 3] and Beals-Coifman [5, 6, 7] Its application to
inverse scattering has been studied by many authors including Ablowitz, Fokas and their collaborators (see
the monograph [4] for references up to 1990), and Grinevich, Grinevich-Manakov, and Grinevich-Novikov
[15, 16, 17, 18, 19, 20, 21, 22]. Mathematically rigorous treatments of the scattering maps for the DS and
NV equation include those of Brown [9], Sung [31], Lassas-Mueller-Siltanen [24], Nachman [28], Perry
[29, 30]. A major challenge involves the classification and analysis of singularities of scattering maps that
lead to soliton solutions, blow-up in finite time, and other dynamical phenomena. Another major challenge
involves understanding semiclassical limits of two-dimensional dispersive equations, as described in greater
detail below. The semiclassical method has yielded insights into the dynamics of dispersive equations in one
dimension: see, for example, the recent work of Buckingham-Miller [11, 12]. We expect that similar insights
will be gained from the study of semiclassical limits, for example, in the DS II equation.

Two-dimensional random matrix models and orthogonal polynomials in the plane have been the subject
of intensive investigation in recent years. Its and Takhtajan [23] outlined a program for studying large-N
asymptotics of orthogonal polynomials and random matrix models by ∂ methods. Elbau and Felder [14]
studied certain perturbations of the Gaussian case V (z) = z2 (cf. (2)) and showed that the density of
eigenvalues converges, in the limit N → ∞, to the characteristic function of an explicit bounded region in
the complex plane. Bagh, Bertola, Lee, and McLaughlin [8] carried out a complete analysis of certain random
matrix models by reducing the underlying ∂ problem for the orthogonal polynomials to a Riemann-Hilbert
problem. An understanding of the full ∂ problem remains elusive.
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3 Presentation Highlights
The FRG began with presentations by Peter Perry on inverse scattering for the Davey-Stewartson equa-
tion, based on [29] and by Ken McLaughlin introducing random matrix models. The purpose of these lec-
tures was to establish a knowledge base among all participants in the two key areas of research considered.
Samuli Siltanen lectured on electrical impedance imaging, the inverse scattering transform, and ∂ methods.
Michael Christ gave an illuminating lecture on the Brascamp-Lieb-type inequalities which underlie much of
the progress in analysis of scattering maps in [9] and [29] (see the Appendix to [29], written by Michael
Christ, for details and references to the literature).

McLaughlin and Miller led an ongoing discussion on semi-classical analysis for the defocussing DS II
equation (1) with q = q(x, y, t, ε) a complex-valued function having initial data of the form

q(x, y, 0) = A(x, y) exp (iS(x, y)/ε)

The problem is to study solutions in the limit ε → 0. Passing to the inverse scattering method, one sees that
the solution to the semiclassical DS II problem is obtained in two steps.

First, one solves the following ∂-problem for µ = (µ1, µ2)
T to compute the scattering transform rof the

initial data:

ε∂µ =
q

2
exp

1

ε

(
kz − kz

)
σ1µ (4)

lim
|z|→∞

µ(z, k) = (1, 0)T .

and recovers the scattering transform r from the formula

r(k) = 2 lim
|z|→∞

zµ2(z, k)

The scattering transform of the full solution then evolves according to

r(k, t) = r(k, 0) exp
2it

ε

(
k2 + k

2
)
.

Second, to recover q(x, y, t, ε), one solves the ∂ problem for ν = (ν1, ν2)
T :

ε∂ν =
r

2
exp

1

ε

(
kz − kz

)
σ1ν (5)

lim
|k|→∞

ν(z, k) = (1, 0)T .

One recovers the potential from the formula

q(x, y, t) = 2 lim
|k|→∞

kν2.

Thus, analytically, one needs to understand the small-ε limit of the ∂-problems (4) and (5).

4 Scientific Progress Made
• Peter Miller and Ken McLaughlin initiated a study of semiclassical limits for the defocussing Davey-

Stewartson II equation. Subsequently, Sarah Hamilton, a postdoctoral research fellow working with
Samuli Siltanen, carried out numerical computations which show some interesting features of the
semiclassical limits. One of the themes of the upcoming conference and workshop at the University of
Kentucky will be the analytical study of semiclassical limits, as a direct outgrowth of these discussions.

• Ken McLaughlin led discussions on the analysis of the ∂ probem for 2D orthogonal polynomials. By
summarizing known results obtained via reductions to Riemann-Hilbert methods for special exam-
ples, team members developed a colection of approximations which should be valid for a large family
of orthogonal polynomials, and attempted to arrive at a small-norm ∂ probem amendable to known
analytical methods.
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• Peter Perry, in discussions with Peter Miller, Ken McLaughlin, and Samuli Siltanen, studied soliton
solutions to the focussing DS II equation and the more general problem of so called exceptional sets
where the scattering transforms have singularities. He initiated a study of determinants and soliton
solutions for the Davey-Stewartson II equation. This led to a collaborative paper with colleague Russell
Brown and graduate student Michael Music on determinants in inverse scattering [10]. One of the
key insights that led to this paper–that the determinant itself satisfies a ∂-equation that allows the
determinant to be computed in terms of scattering data–originated in discussions at the 2012 FRG.

5 Outcome of the Meeting
The following publications have already resulted in part from discussions at this meeting: [10, 13].

The following subsequent meetings have been organized in part by participants in the FRG (participants
in the FRG in boldface type):

• Exceptional Circle Helsinki Workshop, University of Helsinkii,1 August 12-16, 2013 . Organized by
Samuli Siltanen and Sarah Hamilton. This meeting involved eleven researchers from the United States
and Europe.

• Conference and Workshop on Scattering and Inverse Scattering in Multi-Dimensions, University of
Kentucky, 2 May 15-23, 2014, co-sponsored by the National Science Foundation, the Institute for
Mathematics and its Applications, and the University of Kentucky. Organized by Ken McLaughlin,
Peter Miller, and Peter Perry. This conference and workshop will include lectures by Kari Astala
(Helsinki), James Colliander (Toronto), Ken McLaughlin (Arizona), Peter Miller (Michigan), Pe-
ter Perry (Kentucky), Andreas Stahel (Bern University), Paolo Santini (Rome), and Jean-Claude Saut
(Paris-Sud). Approximately 40 participants,including 20 graduate and postdoctoral students, are ex-
pected.

The May 2014 meeting in the University of Kentucky will have the following research foci: (1) Semiclas-
sical limits of ∂-problems and dispersive equations, (2) Eigenvalue distributions of random normal matrices,
(3) Direct scattering and exceptional sets, (4) Inverse scattering and exceptional sets, (5) One-dimensional
limits of two-dimensional inverse problems, All of these foci grow out of discussions at the FRG and its
successor meeting in Helsinki.
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