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1 Overview of the Field
Our workshop is mostly concentrated on the fields of statistical mechanics and probability theory. Here the
classical objects are simple random walk and Brownian motion, and these are well studied and commonly
used processes. We will be considering directed polymers [4] and last passage percolation paths [2], which in
the appropriate light can be seen as simple random walks moving through non-homogeneous environments
with random features. Their study overlaps with and provides insight into many different areas of mathemat-
ics, such as random matrix theory [7], random Schrodinger operators [5], tropical geometry [6], stochastic
PDE [3], and more.

2 Recent Developments and Open Problems
In the last few years a series of papers [1] have started revealing a conjectural universal structure for 1+1-
dimensional polymer and LPP models. The former is described by the continuum random polymer, and the
latter by the so-called Airy sheet. The connection between the two is not yet fully understood as it is for their
discrete analogues, but it is expected that enlightenment will come shortly. Exploring this structure was the
main focus of our workshop.

Current understanding of the universal structure follows exclusively from asymptotic analysis of exact
formulas from discrete statistical mechanics models. These formulas are very involved and the asymptotic
analysis is difficult. Moreover they are generally not robust to even small perturbations in the type of discrete
models under consideration, and even discovering them is not easy. At present one of the major obstacles to
more progress is a lack of these exact formulas.

3 Scientific Progress Made
The main goal of our project is to understand connections between continuum directed polymer models and
continuum last passage percolation. In discrete settings the relationship between these two models is rela-
tively clear, but proper notions of their continuum versions/scaling limits are now just beginning to emerge.
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A full understanding of the continuum objects is important for understanding the universal features and statis-
tics of these models, unencumbered from the non-universal and arbitrary features imposed in consideration of
the discrete models. The classical analogy here is the relationship between discrete simple random walk and
continuum Brownian motion. Studying the latter reveals the universal properties of this type of random spa-
tial motion without having to work around the peculiarities (lattice type, jump distribution) that the discrete
walk can impose.

The focus of our workshop was to study the universality structure in the continuum without relying on
exact formulas, and instead try to proceed using renormalization group arguments. This moves the analysis
more into the framework of dynamical systems, albeit on a complicated space. The advantage is that the
renormalization group ideas are simple, intuitive, and useful for enhancing the conceptual understanding of
the problem, and with the current progress in this field we believe there is a high likelihood they can be
rigorously applied here.

We discovered a particular example where this program can likely be carried out. Consider the quenched
endpoint distribution of a continuous random polymer moving through a continuum space-time random en-
vironment. Assuming the polymer has time length one, the endpoint distribution can be represented as a
random function of x (its density with respect to Lebesgue measure):

fWβ (x) :=
1

ZWβ
E0→x

[
: exp:

{
β

∫ 1

0

W (t, Bt) dt

}]
%(x).

Here W is a space-time white noise on [0, 1] × R (the first coordinate is time, the second space), and the
expectation E0→x is over Brownian bridge paths from 0 to x. Further % is the standard Gaussian density

%(x) =
1√
2π
e−x

2/2.

The random variable ZWβ is a normalization constant so that fWβ integrates to 1 on the line. We will mostly
be interested in the unnormalized quantity

%Wβ (x) := ZWβ fWβ (x).

Due to the fact thatW is a random field whose distribution is invariant under shifts, it follows that the endpoint
distribution is the same as that for regular Brownian motion (i.e. %(x)) but perturbed by a random process
that is necessarily stationary with respect to shifts. This implies that we may rewrite %Wβ as

%Wβ (x) = %(x)eA
W
β (x)

where AWβ (x) is a stationary process on the line whose exponential has mean one. Now since a polymer of
length 2 can be written as a scaling of a concatenation of two independent polymers of length 1, it follows
that (

%Wβ ∗ %W̃β
)
(x) ≡

√
2%W√

2β
(
√
2x),

where ≡ indicates equality in law, W̃ is an independent copy of the white noise, and ∗ indicates convolution.
The various factors of

√
2 on the right hand side are because of scaling properties of the Brownian motion

and the white noise.
The latter identity in law holds for the particular choice of the stationary process given by eA

W
β (x) inherited

from the given fWβ . But it also can be generalized. Let A(x) be a stationary process on the line whose
exponential has mean one. Then it is a straightforward calculation to show that(

%eA
)
∗
(
%eÃ

)
(x) =

√
2%(
√
2x)eC(

√
2x),

where Ã is an independent copy of A, and on the right hand side C is a new stationary process whose expo-
nential has mean one. Thus this class of stationary processes is closed under the operation of multiplication
by % and convolution, after an appropriate scaling of the spatial variable. This gives a simple set of dynamics
on the stationary processes which we believe can be studied using renormalization group arguments. The
main goal is to prove the existence of a fixed point. Other work to be carried out is to prove that these dy-
namics have only finitely many unstable directions (hopefully just one) in the space of processes, and every
other direction is stable (a stable fixed point is clearly A = 0).
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4 Outcome of the Meeting
Using the framework described above we were able to make some progress towards understanding the struc-
ture of the stable manifold of stationary distributions under the given dynamics. In a very rough sense we
were able to understand part of the negative spectrum of the operator described in the last section, and we
continue to work towards understanding the positive spectrum. As part of our progress we were able to de-
velop some seemingly new techniques for studying stationary distributions on the line that may ultimately be
of interest in other applications.
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