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1 Overview of the Field
Composite likelihood methods are extensions of the Fisherian likelihood theory, one of the most influential
approaches in statistics. Such extensions are generally motivated by the issue of computational feasibility
arising in the application of the likelihood method in high-dimensional data analysis. Complex dependence
presents substantial challenges in statistical modelling and methods and in substantive applications. The idea
of projecting high-dimensional complicated likelihood functions to low-dimensional computationally feasible
likelihood objects is methodologically appealing. Composite likelihood inherits many of the good properties
of inference based on the full likelihood function, but is more easily implemented with high-dimensional data
sets. This methodology is, to some extent, an alternative to the Markov Chain Monte Carlo method, and its
impact is unbounded.

The literature on both theoretical and practical issues for inference based on composite likelihood con-
tinues to expand quickly; the field of extremal processes for spatial data, of particular importance for climate
modelling, is one of the most recent examples of an area where composite likelihood inference is both prac-
tical and efficient.

The first international workshop on composite likelihood methods was held at the University of Warwick
in April 2008. It attracted participants from all over the world and was widely viewed as very successful.
Following the workshop, a special issue of the journal Statistica Sinica devoted to composite likelihood was
announced; it was published in January 2011. This issue includes two long overview papers, one of which
is devoted to applications in statistical genetics; several papers developing new theory for inference based on
composite likelihood; new results in the application of composite likelihood to time series, spatial processes,
longitudinal data and missing data. The methodology has drawn considerable attention in a broad range of
applied disciplines in which complex data structures arise. Some notable application areas include, statistical
genetics, genetic epidemiology, finance, panel surveys, computer experiments, geostatistics and biostatistics.

2 Presentation Highlights
In the opening presentation, Varin described complex likelihoods where the ordinary likelihood function is
difficult to evaluate or to specify. However, in many of these situations it is however possible to compute
marginal or conditional densities for subsets of the data.
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Terminology that he set for the workshop, and which are used for this report, are the following.

• pseudo-likelihood: any function of parameter and data that behaves in “some respect” as a likelihood;

• composite likelihood: one of many examples of pseudo-likelihoods based on terms that are logarithms
of marginal and conditional densities;

• quasi-likelihood: different meanings, the two most common are (a) Wedderburn’s quasi-likelihood and
variants (statisticians), (b) quasi-likelihoods as misspecified likelihoods (econometricians);

• limited information methods: used in psychometrics as inference procedures based on low-dimensional
margins.

Let θ be a parameter vector of a parametric model for an observation y, a realization of random m-vector
Y. For independent and identically distributed replications y1,y2, . . ., let n be the sample size. Then

• the composite log-density based on K different margins or conditional distributions has the form

cl(θ,y) =

K∑
k=1

wklAk
(θ,y), lAk

(θ,y) = log fAk
(yj , j ∈ Ak;θ) for margin Ak

• for a sample of size n, the maximum composite log-likelihood estimator θ̂ maximizes
∑n

i=1 cl(θ,yi).

• the composite score function is the partial derivative of the composite log-density with respect to the
parameter vector:

u(θ,y) =

K∑
k=1

wk∇θlAk
(θ,y)

• sensitivity or Hessian matrix: H(θ) = Eθ{−∇θu(θ,Y)}

• variability matrix: J(θ) = Varθ{u(θ,Y)}

• Godambe information: G(θ) = H(θ)J−1(θ)H(θ). As n→∞, G−1(θ) is the asymptotic covariance
matrix of n1/2(θ̂ − θ) under some regularity conditions. In the case of observation of a single time
series or random field, the asymptotics depend on ergodicity conditions and the above n is replaced by
the observation length m.

• The composite likelihood version of AIC, as given in Varin and Vidoni (2005), is

CL−AIC = −2
∑
i

cl(θ̂,yi) + 2tr(J(θ̂)H−1(θ̂))

• The composite likelihood version of BIC, as given in Gao and Song (2010), is

CL− BIC = −2
∑
i

cl(θ̂,yi) + (log n)tr(J(θ̂)H−1(θ̂))

Some challenges covered by the workshop and summarized in Varin’s talk included the following.

• Design issues: how do we select the set of marginal or conditional sets Ak, and how should they be
combined through choice of weights wk; this was discussed in presentations of Lindsay and others.

• Uncertainty estimation: θ̂ is straightforward to obtain by inputting the negative of
∑

i cl(θ,yi) into a
numerical minimizer, and this can yield an estimate H at θ̂, but estimation of the variability matrix J
needed for G−1 and standard errors for components are θ̂ can be computationally challenging.

• Calibration: this comes up in several contexts, including calibration of test statistics with nuisance
parameters, as discussed in Salvan’s talk.
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• Robustness to model misspecifications: examples of different robustness ideas were included in talks
of Jordan and Xu.

• Prediction: how does composite likelihood for prediction compare with composite likelihood for esti-
mation.

• Software development.

The most common form of composite marginal or conditional likelihood that has been used in applications
is pairwise likelihood. Several presentations considered other sets of margins or conditional distributions;
the talks on spatial extremes suggested that there can be gains in efficiencies with triple-wise or trivariate
composite likelihood combined with increased (but feasible) computational time.

Lindsay compared various designs (choices of marginal or conditional distributions) such as pairwise,
conditional pairs, and hybrids (combination of one-wise and pairwise likelihoods).

There are connections with the use of two-stage (and multi-stage) estimating equations in the copula
modelling literature; the method is called inference functions for margins (IFM) in Joe (1997) — first uni-
variate parameters are estimated from univariate likelihoods and then dependence parameters are estimated
from higher-dimensional likelihoods.

In Vidoni’s presentation, for predictive densities, another consideration is how to weight different com-
ponents of cl; the best choices for estimation and prediction might not be the same. In Molenberghs’ pre-
sentation, missing data were handled with inverse probability weighting. In family-based studies of genetic
markers, Briollais and Choi had adjustments for ascertainment, for censoring, and for missing data.

Several notations of calibration came up in the workshop. In Salvan’s presentation, this meant finding a
constant c for the weights wk in the composite likelihood so that for inference

2
∑
i

[cl(θ̂,yi)− cl(θ0,yi)]

can be adjusted suitable to recover an approximate χ2 distribution when the true parameter is θ0. In Rib-
atet’s presentation: a similar adjustment was mentioned for quasi-Bayes, with composite likelihood replacing
likelihood, and the quasi-posterior or composite posterior distribution. Ng’s presentation mentioned that
if the weights are all multiplied by a common constant with wk → cwk for all k, then in the CL-AIC,
tr(JH−1) → ctr(JH−1) which implies that the penalty term tr(JH−1) = tr(HG−1) should not be inter-
preted as the effective number of parameters.

For estimation of J(θ) = E[u(θ,Y)u>(θ,Y)], is some form of direct estimation better or is it better to
estimate the inverse Godambe matrix G−1 of the maximum composite likelihood estimator via an appropriate
jackknife or (parametric) bootstrap? Lindsay mentioned that approximately orthogonal pieces can make
calculation of J or G simpler.

Over the workshop, in addition to those topics mentioned above, there was discussion of the theory
of composite likelihood for incomplete data (Molenberghs), survey data and analysis of composite score
equations from a design viewpoint (Yi) and model comparisons (Ng). A wide range of applications were
covered within the special themed sessions on spatial statistics, multivariate extremes, psychometrics, ge-
netics/genomics as well as other sessions. Applications included spatial-temporal data in air pollution and
health (Bai); spatial-temporal data in fMRI (Kang); spatial extremes (Genton, Ribatet, Padoan); extreme
rainfall events (Huser, Davison); ecology (Lele); Gaussian graphical models (Gao); random graph models
for networks (Bellio); linkage disequilibrium, recombination rates, penetrance in genetics (Larribe, Choi,
Briollais); genetic networks (Song); psychometrics and latent variable models (Moustaki, Vasdekis, Maydeu-
Olivares); panel multinomial probit models for transportation choices (Bhat); multivariate times series of
traffic accidents (Karlis).

There was also a session with demonstrations of software, followed by discussion. Moustaki gave a
demonstration of some software for latent variable modeling used in psychometrics; these include imple-
mentations of limited information methods. Padoan gave a demonstration of an R package CompRndFld,
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Composite Likelihood for Random Fields, co-authored with Moreno Bevilacqua. Ribatet gave a demon-
stration of his R package SpatialExtremes, Modelling Spatial Extremes; in this package, max-stable
processes are fit to spatial data using composite likelihood.

3 Recent Developments and Open Problems
For the study of efficiencies of various designs, it is helpful to have some models where composite likelihood
with higher-dimensional margins are computationally feasible. There are models, such as random effects and
structural equation models, for which some theoretical comparisons might be feasible.

There is still an open question about the sense in which composite likelihood estimation is more robust?
For robustness against misspecification of the full distribution, this seems difficult to make precise. For
studying the robustness of estimating equations based on low-dimensional log-likelihoods, it might be easier
to make further study of IFM for copula models because one can more readily come up with different models
where some set of margins are fixed and others can vary.

As mentioned in one talk, the case of H(θ) = J(θ) is called information-unbiased (a term from Lindsay
1982, Biometrika). Care must be taken in understanding this definition. More clearly, this is written as
H(θ) ≡ J(θ) for all θ in a parameter space.

In the discussion on the Friday morning of the workshop, it was mentioned that for pairwise likelihood,
J(θ) − H(θ) tends to be positive definite when the parameter θ represents positive dependence; see the
Appendix of Ribatet et al (2012) for the context of a Markov process. The intuitive explanation is that
J(θ) −H(θ) involves covariances among different terms in the pairwise log-likelihood and H(θ) involves
the sum of the variance terms of the pairwise log-likelihood. Subsequent to the conference, it was checked
that for the case of the parameter space with θ = θ0 representing independence in the components of Y, then
H(θ0) = J(θ0) under some assumptions, and furthermore, sometimes G−1(θ0) = H−1(θ0)J(θ0)H

−1(θ0)
matches inverse Fisher information and sometimes it doesn’t.

An example was given by Xu (see also in Cox and Reid 2004; Joe and Lee 2009) for the 3-parameter
exchangeable multivariate normal distribution where H(θ) 6= J(θ) but the maximum pairwise likelihood
estimator is the same as the maximum likelihood estimator. More generally for structured models based
on the multivariate normal distribution, the maximum pairwise likelihood estimator could be different from
the maximum likelihood estimator depending on (a) the structural forms of the mean vector and covariance
matrix, and (b) whether some parameters are assumed fixed or known. The relation of the maximum pairwise
likelihood estimator and maximum likelihood estimator for these types of structured models was mentioned
as a research problem in Maydeu’s presentation.

The above example means that one cannot say that the composite likelihood estimate is not fully asymp-
totic efficient if H(θ) 6= J(θ).

Some other theoretical issues are the following.

• Does it matter if there is not a multivariate distribution compatible with, for example, bivariate margins?
This depends on the inferences (e.g., joint tail probabilities) to be obtained from the model.

• How do we ensure identifiability of parameters?

• Can connections to weighted likelihoods provide additional insight?

• Is the composite likelihood ratio test preferable to Wald-type test?

• When is composite marginal likelihood preferred to composite conditional likelihood?

• For large p, small or moderate n asymptotics: is there consistency?

4 Outcome of the Meeting
With more opportunities for discussion in this second composite likelihood conference, there is a clearer
picture of some of the challenges for composite likelihood. Some of these have been mentioned above.
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Outside of the presentations, there were many opportunities for researchers to discuss their work in com-
posite likelihood and give feedback to each other. Subgroups of the participants had other overlapping inter-
ests so there was also much discussion of other topics during meals etc. This workshop will lead to many
future collaborative research efforts among the participants.

From the discussion of computing software for general use for composite likelihood, the conclusion
seemed to be that creating software to cover the many existing applications of composite likelihood is prema-
ture until we have a clearer theoretical understanding of the construction of composite likelihood. However,
a web page could be created to (a) collect the software packages related to composite likelihood, (b) suggest
a common format for development of further R packages with composite likelihood estimation, providing a
standardized user interface to enable easier application of composite likelihood methods.

Finally, invited sessions in other mainstream conferences of international statistical societies will continue
the dissemination of research results on composite likelihood methods. An example is a session on composite
likelihood at the World Congress in Probability and Statistics in July 2012.

References
[1] Cox, D.R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.

Biometrika, 91, 729–737.

[2] Ribatet, M., Cooley, D. and Davison, A.C. (2012). Bayesian inference from composite likelihoods, with
an application to spatial extremes. Statistica Sinica, 22, 813–845.

[3] Gao, X. and Song, P. X.-K. (2010). Composite likelihood Bayesian information criteria for model selec-
tion in high-dimensional data. J. Amer. Statist. Assoc, 105, 1531–1540.

[4] Joe, H., (1997). Multivariate Models and Dependence Concepts, Chapman & Hall, London.

[5] Joe, H. and Lee, Y. (2009). On weighting of bivariate margins in pairwise likelihood. J. Multivariate
Analysis 100, 670–685.

[6] Lindsay, B.G. (1982). Conditional score functions: some optimality results. Biometrika, 69, 503–512.

[7] Varin, C. and Vidoni, P. (2005). A note on composite likelihood inference and model selection.
Biometrika 92, 519–528.


