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1 Overview of the Field
The importance of coding theory to the digital era that we live in cannot be overstated. Our research meeting
aimed to explore the relationship between the theory of error-correcting codes and the more classically studied
fields commutative algebra and algebraic geometry, with the goal of establishing a toolset of joint relevance.

A linear code of length s is a linear subspace C of a finite dimensional vector space Ks over a finite or
infinite field K. A linear code of length s and dimension dimK(C) = n is often viewed as the row space of
a n × s matrix G. The Hamming distance d of C is the minimum number of nonzero entries in a nonzero
element (codeword) in C. The numbers s, n and d are called the parameters of C, and the code with these
parameters is termed an [s, n, d]-code. A central theme to the study of codes is the determination of their
minimum Hamming distance, which is a measure of the code’s error correction capability.

Hamming distance has a nice geometric interpretation: if the columns of the generating matrix G are
viewed as coordinates for a set of points X = {P1, . . . , Ps} in projective space Pn−1 and if these points are
distinct, then, setting hyp(X) = the maximum number of points among P1, . . . , Ps that are contained in a
hyperplane, gives d = n− hyp(X). This description of Hamming distance gives a first glimpse at the crucial
role that the geometry of zero-dimensional projective schemes plays in coding theory.

It may be the case, however, that some of the columns of the generating matrixG are proportional vectors.
Note that adding proportional columns does not change the set of points X , however it does change the row
space of G and hence the code C. In this situation, one must keep track both of the set of distinct points
arising from the columns of the generating matrix and their respective multiplicities. This data is represented
algebraically by means of a fat (non-reduced) point scheme Y = m1P1 + · · · + msPs, where mi is the
multiplicity of the point Pi, i.e., the number of columns of G proportional to the coordinate vector of Pi.

Evaluation codes are a class of codes of great practical importance which can be defined in the language
of polynomials. Let S = K[t1, . . . , tn] = ⊕∞d=0Sd be a polynomial ring over K with the standard grading
and let X be a finite subset of Pn−1 as above. The vanishing ideal of X is the ideal generated by the
homogeneous polynomials vanishing on X . For each d ≥ 0 there is a linear map of K vector spaces

evd : K[t1, . . . , tn]d → Ks f 7→
(
f(P1)

f0(P1)
, . . . ,

f(Ps)

f0(Ps)

)
, where f0(t1 . . . , tn) = td1.

The kernel of evd is precisely the set of degree d polynomials in I(X), denoted I(X)d, and the image of
evd is a linear code denoted by Cd(X) and termed an evaluation code. The case d = 1 gives the linear code
associated to the matrix G whose columns are the points in X; this represents the K-linear map ev1.
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2 Recent Developments and Open Problems
The correspondence between reduced point schemes in projective spaces and codes has been established
and studied from a commutative algebra point of view in [7] and [5]. In [11], numerical invariants of
point schemes are used to bound invariants of the corresponding linear codes and vice-versa. Specifically
Tohăneamu and Van Tuyl prove the following bounds hold true in the case Y = m1P1 + · · · + msPs:
d ≥ α(Y ) − m(Y ). Here α(Y ) is the smallest degree of a hypersurface passing through P1, . . . , Ps with
multiplicities m1, . . . ,ms respectively and m(Z) = max{m1, . . . ,ms}. A natural generalization is the
following

Problem 1. Investigate whether the stronger inequality d ≥ reg(X) − m(X) + 1 ≥ α(X) − m(X) holds,
where reg(X) (the Castelnuovo-Mumford regularity) is the least degree in which the Hilbert function of X
agrees with the number of points of X (counted with multiplicity).

The classical notion of Hamming distance, which is central to coding theory, has been generalized to a family
of generalized Hamming weights in [12]. One can ask

Problem 2. Is there a characterization for generalized Hamming distances for evaluation ideals in terms of
the geometry of the set of reduced points X or the fat point scheme Y analogous to the complement to the
maximum number of points contained in a hyperplane characterization given in section 1?

We have seen in section 1 how generator matrices and evaluation maps produce codes, but in turn these
matrices and maps respectively can be produced from graphs or, more generally, from simplicial complexes.
Let G = (V,E) be a simple graph on vertex set V = {1, . . . , n}, and with s = |E| edges. We assume that
G is connected. A cutset of G is a set of edges in E such that when it is removed it disconnects the graph.
Consider the linear code with generating matrix of size n × s, where each column corresponds to an edge
[i, j] ∈ E(G) and the entries of that column are zeros, except for the i-th and j-th entries which are 1 and -1
respectively. By [11], the minimum distance d of the linear code generated in this manner is equal to the size
of the smallest cutset of G. If G is a planar graph, then this is equal to the smallest size of a simple cycle in
the dual graph of G. We ask

Problem 3. 1. When is the linear code constructed from the a graph as described above a minimum
distance separable (MDS) code? That is, when is d = s− n+ 2, where n is the number of vertices, s
the number of edges and d is the size of the smallest cutset?

2. Is the code associated to the dual graph G⊥ the dual to the code constructed from the graph G?

WhenK is a finite field, the basic parameters (length, dimension, and minimum distance) of the evaluation
codes Cd associated to the set Ts−1 = {[(x1, . . . , xs)] ∈ Ps−1 : xi ∈ K∗ for all i} are known for each
d ≥ 0 (see [6] and [9]). The finite set Ts−1 is called the projective torus of dimension s − 1 over K and
I(Ts−1) = (tq−12 − tq−11 , . . . , tq−1s − tq−11 ). In general, when considering evaluation codes for proper subsets
X ⊂ Ts−1, the basic parameters of Cd, especially the minimum distance, can be hard to determine even when
d = 1. Let G be a simple graph with p vertices V = {1, . . . , p} and q edges, and let X be the algebraic toric
set parameterized by all monomials yiyj such that [i, j] is an edge of G, that is the coordinates of every point
in X are given by evaluating all the monomials yiyj corresponding to edges of the graph at a point in Ts−1.
In this case, we say that Cd(X) is the parameterized linear code of order d associated to X.

Problem 4. For certain families of graphs, determine the generators of I(X), the regularity of S/I(X), and
the minimum distance of the linear codes Cd(X) associated to the given graphs (the length of the codes, |X|,
is already known by [8]).

3 Presentation Highlights
Susan Cooper introduced the paradigm that relates linear codes and the geometry of zero-dimensional schemes
in projective space, as described in the first section. The focus of her talk was on obtaining bounds of the
Hamming distance for linear codes using algebraic parameters of homogeneous ideals in polynomial rings.
In particular, she highlighted two results from [11] which give bounds for a linear code with generating
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matrix G whose columns correspond to a fat point scheme Y = m1P1 + · · · + msPs on a set of points
X = {P1, . . . , Ps}. On one hand, if m1 ≥ m2 ≥ · · · ≥ ms then the following inequalities hold for the
Hamming distance d

m1 + · · ·+md(X) ≥ d ≥ mhyp(X) + · · ·+ms.

On the other hand, if m1 = · · · = ms = m (the case of a uniform fat point scheme), then d can be bounded
in terms of α(X), the minimum degree of a hypersurface passing through all the points in X and in terms of
a homological invariant of I(X) termed the minimum socle degree. The speaker proposed several strategies,
such as trimming, a procedure originating in the paper [1], which gives a good handle on the Hilbert function
of a fat point scheme and asked how minimum distance behaves under this operation.

Ştefan Tohăneanu talked about interpreting the Hamming distance of a code in terms of ideals generated
by products of linear forms. Let `1, . . . , `s ∈ R := K[x1, . . . , xn] be linear forms such that 〈`1, . . . , `s〉 =
〈x1, . . . , xn〉 and let C be the code whose generating matrix has as columns the coefficients of the linear
forms. For 1 ≤ a ≤ s, we define the ideal generated by a−fold products of these forms to be the ideal of R

I(a) := 〈{`i1 · · · `ia |1 ≤ i1 < · · · < ia ≤ s}〉.

De Boer-Pellikaan [4, Exercise 3.25] noticed that d(C) = max{a|ht(I(a)) = k} (here ht denotes the height
of an ideal), a fact which can be extended to recover the generalized Hamming weights as well. The speaker
presented a conjecture from [10] which states that the ideals I(a) have linear graded minimal free resolutions,
as well as partial results which support this conjecture.

Maria Vaz Pinto talked about evaluation codes on toric sets. When K is a finite field and

X = { [(xv111 . . . xv1pp , . . . , xvs11 . . . xvspp )] : xi ∈ K∗ for all i } ⊆ Ps−1,

one says that X is the algebraic toric set parameterized by yv1 , . . . , yvs (s monomials in n variables, yvi =
yvi11 . . . yvinn , vij ∈ N). The speaker considered the parameterized linear code of order d associated to X,
Cd(X). She highlighted some remarkable properties of these parametrized linear codes, such as the dictionary
establishing equivalences between the length of the code and the degree (multiplicity) of the vanishing ideal
I(X) or the dimension of the code and the value of the Hilbert function for S/I(X) in degree d. She pointed
out that a good description for the Hamming distance is still elusive in many important cases.

Rafael Villarreal proposed in his talk a broad generalization for the notion of Hamming distance. Instead
of studying the distance of a linear code by converting the generating matrix into a set of pointsX in projective
space and using the linear aspects of the geometry of these points, as encoded by the hyp(X), one can start
with any homogeneous ideal I in a polynomial ring and define a generalized hypI(d, r) function that encodes
the maximum degree of a subscheme X ⊂ V (I) that is also supported on the intersection of r hypersurfaces
of degree dwhich are linearly independent modulo the ideal I . The talk was dedicated to exploring properties
of this new function and the way they generalize previously known results. The speaker also presented a
computer program designed to efficiently approximate the generalized Hamming distances for a code based
on the use of initial ideals (Gröbner bases).

4 Scientific Progress Made
A substantial amount of algebraic and homological techniques are available to commutative algebraists in
order to analyze properties of varieties embedded in affine or projective space. Familiarity with these tech-
niques has allowed the participants of this focused research group to bring their expertise to bear on several
issues of current interest in coding theory introduced in section 2. By recasting some central notions of cod-
ing theory into algebraic language we were able to strengthen and generalize them to many new settings. Our
main contributions consist of: (1) developing a notion of generalized minimum distance functions motivated
by the generalized Hamming weights of [12] and (2) analyzing several families of codes built from graphs,
which include linear codes whose generator matrix is a signed incidence matrix of a simple graph and toric
codes parametrized by monomials encoding edges of a graph.
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4.1 Generalized minimum distance functions
This new notion generalizes the notions of distance existent in coding theory using the algebraic-geometric
invariant of a scheme called degree (or multiplicity). Let S = K[t1, . . . , tn] = ⊕∞d=0Sd be a polynomial ring
over a field K with the standard grading and let I 6= (0) be a graded ideal of S. We denote the degree of S/I
by deg(S/I). The function δI : N+ × N+ → Z given by

δI(d, r) :=

{
deg(S/I)−max{deg(S/(I, F ))|F ∈ Fd,r} if Fd,r 6= ∅,
deg(S/I) if Fd,r = ∅,

is called the generalized minimum distance function of I , where Fd,r is the set

Fd,r := { {f1, . . . , fr} ⊂ Sd | f1, . . . , fr are linearly independent modulo I, (I : (f1, . . . , fr)) 6= I}.

To compute δI(d, r) is a difficult problem, hence one of our aims is to introduce lower bounds for δI(d, r)
which are easier to compute. One of our main results shows that there exists a function fpI(d, r) termed
the footprint function which is a lower bound for δI(d, r) and is easier to compute. We also explore other
notions of generalized minimum distance such as the generalized minimum Loewy distance, which is better
behaved with respect to non-reduced scheme structures and could provide a satisfactory answer to problems
1 and 2 of section 2. Moreover, since we make use of computational algebra programs in our research, we
have programmed routines compatible with the computational algebra system Macaulay 2 for computing and
analyzing these new invariants.

4.2 Codes from graphs
In our second project, we analyze codes arising from graphsG = (V (G), E(G)) with n vertices and s edges.
Let AG be the matrix whose columns correspond to the oriented edges of G: if {k, l} is the j-th edge then
the jth column of AG has zeros in all of its positions, except in the entries (k, j) and (l, j) of AG, wich
are equal to 1 and −1, respectively. If G is connected, rank(AG) = n − 1 and the rows of AG span a
[ q, n − 1, d1(C) ]-linear code C. We prove that, if G is a connected graph that is not a tree and X is the set
of points whose coordinates are given by the columns of AG, then the Castelnuovo-Mumford regularity of
I(X) is 2. We also classify the graphs that give rise to MDS codes, partially answering problems 3 and 4 of
section 2.

5 Outcome of the Meeting
Although there are many meetings devoted to general advances in coding theory, there have been no opportu-
nities to date for mathematicians specifically interested in commutative algebraic methods applied to coding
theory to get together and exchange ideas for collaboration purposes. We feel that our meeting has marked
an important first step in this regard and we thank BIRS for its support.

We expect that our collaboration will give rise to two research articles [2, 3], one for each of the projects
described in sections 4.1 and 4.2 of this report.
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