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1 Overview of the Field
Spectral geometry is an area of mathematics at the intersection of analysis, partial differ-
ential equations and differential geometry. It investigates the properties of eigenvalues and
eigenfunctions of the Laplacian and other operators, including their dependence on the ge-
ometric, topological and dynamical features of the underlying space (e.g. a Riemannian
manifold or a Euclidean domain).

Originally, spectral geometry was motivated by the study of mathematical models of
physical processes, such as vibration, heat propagation, oscillations of fluids and quantum-
mechanical effects. The quest to better understand these phenomena lead to the develop-
ment of powerful analytic and numerical methods in geometric spectral theory and also
had a profound impact on engineering applications. In recent years, new and somewhat
unexpected applications of these techniques to computer science have emerged, notably to
shape recognition and machine learning. These applications, in turn, inspire new exciting
theoretical and computational challenges.

Spurred by recent fast-paced progress on theoretical and applied aspects of spectral
geometry, our workshop brought together experts on theoretical, numerical and applied
aspects of this discipline, with the objective to foster interactions and promote new col-
laborations. To our knowledge, no interdisciplinary meetings of this kind have been held
previously, and by all accounts the meeting led to a variety of new research collaborations
and open problems.

2 Recent Developments
There is a long history of fruitful interactions between geometric spectral theory, numeri-
cal analysis and computer science. In recent years, the interplay between these fields has
reached new heights due to the emergence of increasingly powerful computers, new moti-
vating applications and more efficient numerical algorithms.

Numerical calculations serve as an indispensable source of intuition and are behind
many important advances in spectral geometry. In particular, numerical experiments played
a stimulating role in recent breakthrough research on nodal portraits of random linear com-
binations of eigenfunctions (see, for instance, [SSS16, SW15, CS14]). Numerical methods
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are actively used in the rapidly developing theory of spectral minimal partitions (see [BNH11,
BNH17]). For low eigenvalues, numerical experiments are a major source of conjectures
in shape optimization problems (see [JLN∗05, AF12, ABN15, BBG94]). An exciting new
trend is to use numerical analysis not only to formulate conjectures, but to actually prove
theorems in spectral geometry [BF16, pol] using rigorous computer-assisted methods.

Some of the most important recent applications of spectral geometry lie in the areas
of shape analysis and machine learning (see [ZGL03,BN03,RWP06,BNS06,CL06,CL06,
DBG∗06, JMS08, OSG08, SOG09, OMMG10, OBCS∗12, OMPG13, ROA∗13, CSBC∗17]).
These applications are based on the properties of spectral quantities such as heat kernels
and eigenfunctions associated with the Laplacian (see, for instance, [BBG94, JMS08]). As
it is now well-understood, the Laplacian on a Riemannian manifold carries a lot of infor-
mation about intrinsic geometry. To capture the extrinsic geometry of shapes using spectral
quantities, however, one needs to use other operators. A natural choice is the Dirichlet-to-
Neumann operator, which, incidentally, has been in the focus of intensive research in the-
oretical spectral geometry in recent years (see [PS15,GPPS14,FS11,FS16,GP17,AKO17,
BBG94]). The collection of eigenvalues of the Dirichlet-to-Neumann operator is also called
the Steklov spectrum, as it is precisely the spectrum of the Steklov boundary value problem.
Recent advances in the study of the Steklov spectrum, particularly, of the corresponding
geometric invariants, open up a number of promising new applications to shape analysis
(see [WBCPS17]).

Accompanying these developments, the design and analysis of high-accuracy discretiza-
tion methods for spectral problems and optimal design has been the focus of intense re-
search activity in numerical analysis. A plethora of discretization techniques—including
methods based on particular solutions [BHT15], spectral methods, finite element meth-
ods [Bof10,CGS15] and integral equation methods [ABN15]—have been developed. Each
of these methods presents both advantages and challenges in the numerical analysis, and
this analysis in turn leads us to improved understanding of the properties of the eigenvalues
and eigenfunctions of the operators under investigation, and can spark entirely novel areas
of development. For example, as described in [Bof10], the use of very common Lagrange
finite elements for the Maxwell eigenvalue problem was shown to yield the wrong spectrum
even on simple geometries, motivating the large-scale adoption of the edge finite elements.
The design of numerical methods for inverse problems has lead to the investigation of (non-
linear and non self-adjoint) transmission eigenvalue problems, and this in turn lead to the
design of novel methods. The computations were used extensively to enhance our under-
standing of the situations under which the existence of such eigenvalues could be proven.
The design of a boundary integral method for mixed Dirichlet-Neumann eigenvalues of the
Laplacian is necessarily intertwined with a careful study of the asymptotic behaviour of the
eigenfunctions [ABN15].

Upon discretization, the resulting large discrete systems have been coupled to state-of-
the-art eigenvalue solvers and optimization methods. Naı̈ve approaches do not suffice, and
the design of good algorithms in this area has yielded many interesting and challenging
research directions, due to the potentially nonlinear/non-convex nature of the objective
function to be optimized. If the eigenvalues are clustered, or if the original spectrum is not
discrete, these problems are much harder, see e.g. [GGO13].

Another fascinating and important area of investigation seeks to provide computable
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error bounds and eigenvalue enclosures, e.g. [Liu15]. These bounds are crucial if numerical
methods are to be used for formulating conjectures.

Finally, practitioners in geometry processing, computer graphics, medical imaging, ma-
chine learning, and other computational disciplines have employed spectral geometry to
great effect, improving the quality and flexibility of algorithms for a broad range of ge-
ometric tasks. The most exciting research in this field requires synthesis of theoretical,
numerical, and applied ideas to motivate practical research problems, extract detailed un-
derstanding of underlying models, and formulate discrete approximations that provide a
stable, faithful link between theory and practice.

3 Presentation Highlights
In view of the interdisciplinary nature of the workshop, the talks were equally divided
into three main themes: theory, numerics and applications. In each theme, one talk was
reserved for an overview of the subject. All speakers were advised to give colloquium-
style presentations accessible to non-experts.

3.1 Theoretical aspects of spectral geometry
A broad historical overview of theoretical advances in spectral geometry from Lord Rayleigh
and Hermann Weyl to our time was presented by Michael Levitin. He described some major
results on eigenvalue estimates, spectral asymptotics and spectral geometry of the Dirichlet-
to-Neumann map. These were recurrent themes during the workshop, and Michael’s talk
served as an excellent introduction to the subject.

The talks by Dorin Bucur and Mikhail Karpukhin were concerned with shape opti-
mization for Laplace eigenvalues on Riemannian manifolds and Euclidean domains. Dorin
Bucur presented his recent work with Antoine Henrot [BH18] on the maximization of the
second nonzero Neumann eigenvalue on Euclidean domains. They have shown that among
all domains (not necessarily connected) of given volume, the second nonzero Neumann
eigenvalue is maximized by a disjoint union of two identical balls. This result extends the
2009 theorem of Girouard, Nadirashvili and Polterovich [GNP09] who proved a similar
statement for simply connected planar domains. Mikhail Karpukhin reported on his recent
joint work with Nadirashvili, Penskoi and Polterovich on a sharp isoperimetric inequal-
ity for all Laplace eigenvalues on a sphere [KNPP17]. It was shown that for any positive
integer k, the k-th nonzero eigenvalue on the two-dimensional sphere endowed with a Rie-
mannian metric of fixed area, is maximized in the limit by a sequence of metrics converging
to a union of k touching identical round spheres. This proved a conjecture posed by Nadi-
rashvili in 2002.

David Sher and Asma Hassannezhad spoke about recent progress in understanding
spectral asymptotics for Steklov-type problems on Euclidean domains. David Sher pre-
sented his recent joint work with Levitin, Parnovski and Polterovich on the proof of the
two-term asymptotic formula for sloshing (mixed Steklov–Neumann) eigenvalues on pla-
nar domains [LPPS17]. In particular, this result confirmed the 1983 conjecture of Fox–
Kuttler [FK83] and could be considered a first step towards obtaining sharp spectral asymp-
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totics for the Steklov eigenvalues (or, equivalently, eigenvalues of the Dirichlet-to-Neumann
map) on polygons. Asma Hassannezhad’s talk was based on her joint work with Ari
Laptev [HL17] on estimates on the Riesz means for the eigenvalues of mixed Steklov prob-
lems on Euclidean domains of arbitrary dimension.

Virginie Bonnaillie-Noël presented a collection of analytic and numerical results on
spectral minimal partitions. Earlier developments on this topic were mostly concerned
with either sums or maxima of the first eigenvalues of a partition. The talk focused on
recent advances in the general case of the p-norm of the vector composed by the first eigen-
values of each subdomain of the partition. Some of these results were obtained jointly with
Beniamin Bogosel [BNB16, BBN17].

Yaiza Canzani presented her recent joint works with John Toth and Jeffrey Galkowski
[CGT18, CT16] on estimates of the averages of Laplace eigenfunctions over Rieman-
nian submanifolds. Particularly strong results were obtained for surfaces with an Anosov
geodesic flow, such as surfaces of negative curvature.

3.2 Numerical methods
Jeff Ovall presented an overview of discretization strategies and methods for locating the
eigenvalues of discrete systems. Naı̈ve implementations of discretizations can lead to prob-
lematic results, and this point was highlighted by simple examples. Next, he presented a
filtered subspace iteration strategy for (possibly) unbounded self-adjoint operators. The
method is analyzed in a fairly general framework. The bulk of the computational effort in
the algorithm involves approximating the action of the resolvent at a few points along a
contour enclosing the eigenvalues of interest.

David Colton provided a survey of transmission eigenvalue problems. These arise in
inverse scattering theory, and are non-self-adjoint in nature. Transmission problems exhibit
fascinating spectral properties and many open questions remain: indeed, the existence of
the spectrum is only guaranteed under fairly restrictive assumptions on the contrast param-
eter. Whether these can be relaxed is an interesting open question. A remarkable con-
nection (due to Fioralba Cakoni and Sagun Chanillo) between the location of transmission
eigenvalues for automorphic solutions of the wave equation in the hyperbolic plane and the
Riemann hypothesis was also briefly discussed.

The spectral indicator method described by Jiguang Sun is an efficient method for de-
termining the location and multiplicity of eigenvalues in the complex plane. The indicators
are inexpensive to compute, and the method is memory-efficient even for large spectral
problems.

There is an intimate connection between the numerical analysis of wave scattering prob-
lems and the calculation of spectra; the family of time-domain spectral methods have typ-
ically relied on the availability of eigenfunctions of the Laplacian on a given domain to
serve as an efficicent basis. These can, however, be prohibitively expensive to compute on
complex geometries. Oscar Bruno described the need for spectrally accurate algorithms for
both scattering and spectral problems, and discussed some of the key ideas behind integral-
equation based approaches.

Xuefeng Liu presented the recent progress in providing guaranteed eigenvalue bounds
in computation. For all but the simplest geometries the eigenvalues of elliptic operators
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are computed via approximation; it is important to be able to state computable intervals
around the approximate eigenvalue within which the true eigenvalue is guaranteed to lie.
Such a method is now available using finite element methods, and guaranteed eigenvalue
bounding strategies for the Laplace, the Biharmonic, the Stokes, the Steklov operators were
presented. A related talk was given by Joscha Gedicke on his joint worith with Carsten
Carstensen. He discussed recent results on guaranteed lower bounds for eigenvalues of the
Laplace operator on arbitrary coarse meshes using the nonconforming Crouzeix-Raviart
finite element method. This approach was shown to yield guaranteed eigenvalue bounds of
surprisingly high accuracy.

Francesca Gardini’s talk was concerned with the adaptive finite elmeent method for
eigenvalue problems. In particular, she explained how this method could be used to ap-
proximate multiple eigenvalues and clusters of eigenvalues. Optimal convergence of the
method for the Laplace eigenvalue problem in mixed form was also discussed.

Sebastien Dominguez presented his joint work with Nilima Nigam and Jiguang Sun on
Jones modes in Lipschitz domains. The Jones eigenvalue problem is an overdetermined
problem, where the Neumann eigenvalue problem for linear elasticity is coupled with a
constraint on the normal trace of the displacement along the boundary. It is relatively
unexplored and has many interesting features, notably its sensitive dependence on boundary
geometry. In the talk, existence of eigenpairs for this eigenvalue problem was proved in two
and three dimensions, and some numerical results were presented on simple geometries.

The meeting concluded by the talk of Braxton Osting on his joint work with Dong
Wang and Ryan Viertel on diffusion generated methods for target valued maps. Diffusion
generated methods were discused for minimizing the Dirichlet energy of a function taking
values in a wide class of target sets. Applications to finding Dirichlet partitions, generating
quadrilateral meshes and solving certain inverse problems were presented.

3.3 Applications
Justin Solomon gave a survey of applications of spectral geometry to different disciplines
in computer science, including computer graphics, machine learning, and medical imag-
ing. The key theme in his talk was to show how the numerical methods and theoretical
results covered in the previous survey talks are incorporated into algorithms that leverage
the geometry of scanned shapes and abstract clouds of data points.

Ron Kimmel reported on applications of spectral geometry to surface classification.
The classification problem is to find an algebraic representation for each surface that would
be similar for objects within the same class and preserve dissimilarities between classes. He
discussed how to transform the geometric problem of surface classification into an algebraic
form of classifying matrices. The eigenfunctions of the Laplacian with two distinct met-
rics on a surface are used extensively [AKR13]. Another key topic is the connection with
deep learning techniques, and a new approach for encoding geometric intuition into mod-
eling, training, and testing. The key idea is to design learning algorithms to use geometric
representations and invariants, for applications from shape matching, facial surface recon-
struction from a single image, to reading facial expressions [RSK16, RSOEK17, SRK17].

Etienne Vouga described preliminary results on inverse spectral problems, namely how
to embed a piece of geometry given its Laplace–Beltrami spectrum. His talk covered a
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promising new algorithm leveraging spherical conformal parameterization techniques to
pose the problem in terms of optimization over spherical harmonic coefficients. Prelim-
inary experiments show some promise for practical tools that solve the inverse spectral
problem numerically.

Mirela Ben-Chen and Amir Vaxman demonstrated the value of spectral geometry algo-
rithms for problems involving vectors and frames on discrete surfaces. Prof. Ben-Chen’s
talk focused on an operator-based approach to vector field processing, representing fields
not as collections of direction vectors but rather as derivative operators discretized as ma-
trices; her work reveals new discretization techniques with structure-preserving properties,
as well as applications to field design [ABCCO13, AOCBC15] and simulation [AWO∗14,
AVW∗15]. Prof. Vaxman presented efforts to unify directional field processing with subdi-
vision operators for discrete surfaces, providing a representation of vector fields compatible
with subdivision-based superresolution.

Hervé Lombaert demonstrated the value of spectral techniques for medical image pro-
cessing [LGPC11], in particular correspondence between 3D brain models gathered using
MRI. In this domain, spectral algorithms allow for efficient and accurate intrinsic match-
ing of neuroimaging data, enabling tools that transfer labels and other information across
multiple scans and subjects [LAA15].

Finally, Yu Wang showed that intrinsic surface-based algorithms for geometry process-
ing can be extended to incorporate volumetric information by replacing the Laplacian with
the Dirichlet-to-Neumann operator [WBCPS17]. His application of the boundary element
method (BEM) enables volumetric shape analysis without tetrahedral remeshing to fill the
volume bounded by a surface. Intriguing theoretical questions arise from his work in-
volving the behavior of integral operators involved discretizing the Dirichet-to-Neumann
operator in the case of open surfaces.

4 Outcomes of the Meeting
The intents of this meeting were to (a) capture the state-of-the-art in the theory, numerical
analysis and applications of spectral geometry, (b) provide a forum for experts in these
typically disparate communities to interact and (c) identify common challenges or problems
of mutual interest. As is typical in many mathematical disciplines, several subcommunities
of researchers make significant progress with little “cross-pollination”, sharing their results
with others who may benefit or have ideas for extension.

The current workshop was demonstrably successful in achieving these goals. Longer
tutorial and survey-style talks from theory, numerics and applications set a common tech-
nical base and vocabulary among the participants. For instance, we saw that the ‘stiffness
matrix’ in finite elements is the ‘cotangent Laplacian’ in discrete differential geometry.
Shorter talks presented the state-of-the-art from the viewpoint of the subcommunities, and
the tutorials prepared all the participants to understand some of the recent developments
in the field more broadly, as well as to launch meaningful interactions and collaborations.
The breaks and open problem sessions generated several interactions and inspired research
projects of mutual interest. Here is a sampling of open problems:
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4.1 Inferring interior structure of Mars from spectral data
The first seismometer is about to land on Mars in November 2018. Amongst other data, it
will be able to measure the spectrum of free elastic oscillations of the planet. What can be
inferred about the internal structure of Mars from this data? Do discontinuities in the media
have a “spectral fingerprint” in terms of heat invariants, Weyl asymptotics, or some other
spectral quantity? As a simple first model, one may consider the Neumann spectrum of the
Laplace-Beltrami operator on a Riemannian manifold with boundary when the metric has
a conormal jump or other singularities across a hypersurface.

This problem was presented by Joonas Illmavirta.

4.2 A numerical analysis for the Jones eigenvalue problem in elasticity
in curvilinear domains

An unusual eigenvalue problem in elasticity was introduced by D.S. Jones [Jon83], in
the larger context of fluid-structure and elastodynamic transmission problems. Stated ab-
stractly, the eigenvalue problem is as follows. Let Ω be an open and bounded domain in Rd

with reasonable boundary, and λ, µ ∈ R are given constants so that µ > 0, λ+ 2
d
µ > 0. We

seek nontrivial u, vector fields in Ω, and ω2 ∈ C such that

Lu := µ∆u + (λ+
2

d
µ)grad divu = ω2u (1)

in Ω. On the boundary we enforce the natural boundary condition for the Lamé operator
L. In addition, we enforce u · n = 0 on the boundary of Ω, where n is the unit outer
normal to the boundary (defined a.e.). It was only recently established that this constrained
eigenvalue problem has a discrete countable spectrum in non-axisymmetric domains with
Lipschitz boundaries; it was shown by Hargé in 1990 that the set of C∞ domains which do
not support such a spectrum is dense amongst all possible C∞ domains. It is clear that any
rigid rotation is a Jones mode in a disk, and so zero is an eigenvalue of L in some instances.

We would like to understand the approximation problem of computing these eigen-
modes in curvilinear domains. A standard mesh of triangles will not approximate the
boundary exactly, and a consistency error is committed. Certain coercivity constants de-
generate in the passage from polygonal domains with many sides to a curvilinear domain,
and therefore one question is: In what situations does the Jones spectrum on approximating
domains approach the true Jones spectrum, and at what rate? Another question is: Can one
develop a stable approximation scheme for the eigenmodes in curvilinear domains?

This problem was presented by Nilima Nigam.

4.3 Discrete isoperimetric inequalities
Fine-grained results characterize isoperimetry in terms of the eigenvalues of the Laplacian
operator for shapes embedded in the plane; for instance, the shape extremizing the first
eigenvalue is a circle. No analogous results, however, are known about discrete Laplacian
operators, e.g. the cotangent Laplacian from first-order finite elements on a triangle mesh.
Suppose the topology of a triangle mesh with n vertices is fixed. Then, we could consider
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the first nonzero Laplacian eigenvalue of the mesh to be a function λ(X) : Rn×2 → R+,
where X ∈ Rn×2 gives the positions of the vertices in the plane. Then, we could ask the
usual isoperimetric question: What configuration of vertices in X extremizes λ(X) subject
to a constraint on the area covered by X in the plane?

Similarly, if we fix the boundary of a polygonal region Ω ⊆ R2, we have many choices
of triangulations in the interior of Ω. A distinguishing feature of the discrete problem is
that different triangulations of the same region in the plane may have different spectra.
Hence, we can ask: What conditions on a mesh of Ω make for larger or smaller principal
eigenvalues?

This problem was presented by Justin Solomon.
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