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1 Overview

Scientific computing is an increasingly important tool in many areas of sci-
ence and engineering. By simulating models of physical phenomena on a
computer we can, for example, gain insight into processes that are difficult
or impossible to measure experimentally. Such computations can be used to
verify or guide theoretical explorations. Here we are driven by physical solu-
tions which would require prohibitive computational resources if implemented
in a naive way. The solutions evolve on disparate space and time scales re-
quiring techniques which self adapt and direct computational resources to
the regions of interest.

Adaptive moving mesh methods have received increasing attention from
researchers and practitioners over the last two decades. These methods, ei-
ther used as stand-alone methods or combined with other adaptive mesh
methods, are capable of producing meshes of good quality (smoothness and
alignment), and meshes which resolve the features of interests in the physical
solution with significant increases in accuracy whilst reducing the computa-
tional cost. Capitalizing on the recent progress, there is a continuing effort to
improve the efficiency of existing methods and to implement these approaches
in numerical solvers for application problems of interest.

Loosely speaking, there are three types of adaptive mesh methods, h-, p-,
and r-adaptive methods. h-adaptive methods achieve adaptivity by adding
and deleting mesh points and swapping mesh edges/faces while p-adaptive
methods do so by adjusting the order of solution approximation over mesh
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elements. On the other hand, r-adaptive methods, also called adaptive mov-
ing mesh methods or more simply, moving mesh methods, achieve desired
adaptivity by relocating or moving mesh points. The mesh connectivity is
kept fixed during mesh movement; nevertheless, the mesh points can be re-
connected between time steps or iterations. Adaptive moving mesh methods
can be used alone or combined with h- and p-adaptive methods. It should
be pointed out that Lagrangian methods and arbitrary Lagrangian-Eulerian
(ALE) methods in computational fluid dynamics are special types of adap-
tive moving mesh methods. Moreover, mesh smoothing methods such as
Laplacian smoothing and optimization-based smoothing methods employed
in mesh generation and mesh refinement can be viewed as a type of moving
mesh method although their goal is to improve mesh quality.

Whilst h-adaptive methods are now mature in their development, the
newer r-adaptive methods show much promise, and have certain advantages
in that they have much less complex data structures, can be easily coupled to
legacy codes, they are well suited to problems with moving boundaries and/or
Lagrangian structures, and often result in much more regular meshes. How-
ever, they have yet to realise their full potential on seriously large problems
and need to be mapped effectively to many-core computing technologies.

The time is ripe for a careful appraisal of these methods and to plan for
their future development and adoption. This was the aim for this meeting.

2 Meeting Particulars

This five day workshop attracted 37 participants which included 10 females
and 6 graduate students. The five days included 25 talks of varying length
(keynote and contributed talks) as well as an evening whole group brain-
storming and planning session.

The meeting saw leading experts in the design and application of r-
adaptive methods address the following topics:

• The effectiveness and design of mesh movement strategies to adapt to
a function (which may be a solution of a PDE) to minimize interpola-
tion/truncation error or satisfy other considerations. Deriving rigorous
results to show that this has been achieved.

• The effectiveness and design of mesh movement associated with changes
in the physical domain (free or moving boundary problems) or problems
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with complex boundary conditions.

• Mesh movement for better mesh quality (mesh smoothing, used in mesh
refinement and quality improvement).

• Mesh rezoning in ALE methods (Arbitrarily Lagrangian-Eulerian in
computational fluid dynamics).

• Coupling mesh movement to the solution of an evolving PDE. In partic-
ular effective strategies for dealing with large scale advection dominated
problems.

• Preservation of qualitative solution properties (such as conservation
laws, geostrophic balance) under mesh movement strategies.

• Mesh movement on manifolds.

• Computing adaptive meshes with global quality effectively on many–
core compute technologies.

The brainstorming session included a discussion on the future of the
research area and larger research community in adaptive meshing and r-
refinement. This included discussion about

• The development of effective test problems suitable for a wide vari-
ety of adaptive meshes, and a comparison of techniques on large scale
application problems.

• A permanent website for the research community to share research
papers, computer codes, and meeting announcements.

The central goal of this event was to encourage participants to join their
expertise for the mutual benefit of developing, testing, appraising and de-
signing, effective moving mesh methods which can be used on challenging
problems in the future.

3 Presentation Highlights

The complete list of talks and abstracts are available on the BIRS website.
Here we mention a small sample of a few highlights.
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Mikhail Shashkov, a senior researcher in the field, gave a talk entitled
Adaptive reconnection-based Arbitrary Lagrangian-Eulerian method. In this
talk he presented a new adaptive reconnection-based Arbitrary Lagrangian
Eulerian method. This method includes an explicit Lagrangian phase on
arbitrary polygonal meshes in which the solution and positions of grid nodes
are updated; a rezoning phase in which a new grid is defined - both number
of cells and their locations as well as connectivity (based on using Voronoi
tessellation) of the mesh are allowed to change; and a remapping phase in
which the Lagrangian solution is transferred onto the new grid.

A post-doc Andrew McRae talked about Mesh adaptivity on the sphere
using optimal transport, and a moving mesh scheme for the nonlinear shallow
water equations. Here the mesh is obtained as the solution of a Monge-
Ampere equation, a scalar nonlinear elliptic PDE. This optimal transport
approach also generalizes naturally from Euclidean space to manifolds such
as the sphere. This method is applied to a finite element shallow water model,
as needed in global numerical weather prediction.

In An adaptive moving mesh method for geometric evolution laws and
bulk-surface PDEs, John Mackenzie considers the adaptive numerical solu-
tion of a geometric evolution law where the normal velocity of a curve in
two-dimensions is proportional to its local curvature as well as a general
non-geometric driving force. An interface tracking approach is used which
requires the generation of a moving mesh. He then considers the generation
of bulk meshes for the solution of bulk-surface PDEs in time-dependent do-
mains. The moving mesh approach is then applied to a range of problems in
computational biology including image segmentation, cell tracking and the
modelling of cell migration and chemotaxis.

Graduate student Avary Kolasinski’s talk A surface moving mesh method
based on equidistribution and alignment provides an algorithm to improve the
quality of the mesh on a surface using a moving mesh method. She constructs
a surface moving mesh method based on mesh equidistribution and alignment
conditions. She studies various numerical examples using both the Euclidean
metric and a Riemannian metric.

In Optimal transformation-based adaptive grids, Paul Zegeling discusses
stationary optimal grids for singularly perturbed boundary-value problems.
An optimal time-dependent transformation for monotone traveling wave solu-
tions will be proposed. This type of transformation is related to a perturbed
method of characteristics. In the final part of the talk, fractional-order dif-
ferential equations were considered with a discussion of the generation of
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efficient adaptive grids for these problems.
Jens Lang’s talk Adaptive moving meshes in large eddy simulation for

turbulent flows discussed adaptive moving mesh methods for the Large Eddy
Simulation (LES) for turbulent flows. The characteristic length scale of the
turbulent fluctuation varies substantially over the computational domain and
has to be resolved by an appropriate numerical grid. The monitor func-
tion, which is the main ingredient of a moving mesh method, is determined
with respect to a quantity of interest (QoI). These QoIs can be physically
motivated, like vorticity, turbulent kinetic energy or enstrophy, as well as
mathematically motivated, like solution gradient or some adjoint-based error
estimator. Results were presented for real-life engineering and meteorological
applications.

A moving mesh finite difference method for non-monotone solutions of
non-equilibrium equations in porous media by Hong Zhang presents a moving
mesh finite difference method to solve a modified Buckley Leverett equation
with a dynamic capillary pressure term from porous media. The effects of
the dynamic capillary coefficient, the infiltrating flux rate and the initial and
boundary values are systematically studied using a traveling wave ansatz and
efficient numerical methods. The governing equation is discretized with an
adaptive moving mesh finite difference method in the space direction and an
implicit-explicit method in the time direction. In order to obtain high qual-
ity meshes, an adaptive time dependent monitor function with directional
control is applied to redistribute the mesh grid in every time step, and a
diffusive mechanism is used to smooth the monitor function.

4 Meeting Outcome

Moving mesh methods have passed its early development stage (proof-of-
concept and algorithm development) and now the time has come for further
mathematical justification, rigorous error analysis, development of more effi-
cient and robust methods and implementations, and broader, more realistic,
and large scale applications (for example, for problems in atmospherical sci-
ences, computer science, petroleum engineering, aerospace engineering, and
biology).

This was the first meeting in many years which brought together senior
and up and coming researchers from diverse areas in the field of adaptive
numerical methods for partial differential equations. A fantastic exchange of
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the latest research in the area resulted, as well as crucial planning for the
future of the community.
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