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1 Overview
Costello and Gwilliam [2] developed a general framework of constructing factorization algebra of quantum
observables for any quantum field theory as defined earlier in Costello’s book [1].

The Focused Research Group aimed to develop the formalism further toward two goals:

1) capturing bigger generality;

2) allowing concrete computations

The principal focus was to understand various sorts of defects of quantum field theory within the framework.
In this report, we record the two main topics that were discussed in the meeting. These in particular include
recent developments and open problems, presentation highlights, and scientific progress made.

2 Semiclassical OPE

2.1 OPE of Local Operators
This subsection is a quick summary of Section 10.3 of Costello and Gwilliam [2]. The main result describes
the first order in ~ contribution to the operator product expansion (OPE) of local operators from the founda-
tional construction of the quantum factorization algebra.

Consider classical field theory on Rn and classical observables Obscl
0 supported at 0 ∈ Rn. These are

what we call local operators. For O ∈ Obscl
0 , we write O(x) for its translate to x ∈ Rn. Then the claim is

that the OPE, in the leading order in ~, gives a Poisson bracket on Obscl
0 .

Let us understand this from the perspective of factorization algebras. Consider two local operators
O1,O2 ∈ Obscl

0 . We look at a factorization product Õ1(0) · Õ2(x) ∈ Obsqq(D(0, 2|x|)) modulo ~2 where Õi
is a lift to quantum observables defined mod ~2. The result modulo ~2 is independent of the choice of lifts.
As we can, modulo ~, extend it to x = 0, the OPE measures an obstruction to extending this continuously
across the origin x = 0.

Now we write

Õ1(0) · Õ2(x) ≡ ~
∑
i

Oi(0)Fi(x) + (regular at x) modulo ~2
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whereOi(0) is a basis of operators and Fi is an analytic function modulo functions continuous at 0, which we
denote by Fi ∈ Cω(Rn \ 0)/C0(Rn). Note that this information only depends on O,O′ and classical field
theory; this is a semi-classical computation. Still, this amounts to doing certain simple Feynman diagram
computation.

Let us use notation {O1(0),O2(x)} = lim~→0 ~−1O1(0) ·O2(x) for the OPE. In fact, one obtains a map

{−,−} : Obscl
0 ⊗ Obscl

0 → Obscl
0 ⊗ (Cω(Rn \ 0)/C0(Rn)).

The notation is justified because this satisfies the Leibniz rule

{O1(0)O2(0),O3(x)} = O1(0){O2(0),O3(x)}+O2(0){O1(0),O3(x)}.

2.2 Formalism for OPE
We want to record the underlying formalism for the above. As a first step, we present the result as a concrete
construction. The formalism for extended defects is work in progress. We eventually hope to understand to
what extent we can analogously discuss the quantum OPE.

Consider a classical field theory with space of fields E . We have an (IR regulated) propagator P ∈
D(M2, E�2) such that P |M2\∆ ∈ C∞(M2 \ ∆, E�2). The classical interaction terms are given by I =∑
k≥3 Ik where Ik ∈ Symk

C∞M
(J (E)∨)⊗DM

DensM ⊂ D(Mk, (E !)�k)Sk
. In this subsection, we work with

M = Rn.
As an example, consider scalar theory on M , where E = C∞(M). The propagator is

P (x, y) =

∫ L

0

Kt(x, y)dt where Kt(x, y) =
1

(4πt)n/2
e−
|x−y|2

t

A generic interaction term may be of the form Ik(φ) =
∫
M
∂i1φ

j1 · · · ∂ilφjl with
∑l
m=1 jm = k, where we

abuse the notation to write a density as an integral.
To first order in ~, the only diagrams that will contribute to the OPE of two local operators will be irre-

ducible trees connecting the two. Fix such a diagram, with interaction terms Ik1 , ..., Ikp and p+1 propogators,
(p− 1) of them linking the p interaction vertices together in a line, and one on each end which will contract
with the local operators of which we are computing the OPE.

Before contracting with the local operators at each end, we have k =
∑p
i=1 ki − 2p external legs of

the interaction vertices, and two external legs of propagators, one at each end. Thus, the amplitude of this
diagram is given by

Ã ∈ D(M2 ×Mk, E�2 � (E !)�k) ∼= D(M2, E�2)⊗̂D(Mk, (E !)�k)

Here is a proposition. The restriction of Ã to the compliment of the diagonal ∆ = M ↪→M2 satisfies

A := Ã|(M2\∆)×Mk ∈ C∞(M2\∆, E�2)⊗̂D(Mk, (E !)�k) ⊂ D(M2\∆, E�2)⊗̂D(Mk, (E !)�k)

Proof. Follows from the fact that the propogators are smooth away from the diagonal themselves, and that
the interactions are strictly supported on the small diagonal, so that contraction with them can not propogate
the singularities away from the diagonals.

Now let us fix two local operators, which for simplicity we assume to be linear in the fields, and thus
given byOi ∈ J (E)∨⊗δxi

for xi ∈M and i = 1, 2. Let us allow the positions of the local operators to vary,
or equivalently view the underlying elements of J (E)∨ as flat families of local operators. This is where we
used the assumption M = Rn; otherwise one has to be more careful. Then their contraction withA yields an
element 〈O1 �O2,A〉 ∈ C∞(M2 \∆)⊗̂D(Mk, (E !)�k).

Now, fix a point w0 ∈ M , choose coordinates x, y on M2 in a disk U × U around (w0, w0) and let
z = x−y

2 and w = x+y
2 on M2. We will consider the limit z → 0 with fixed w = w0 which will be the

common value x = y = w0 in the limit. Then we have the following proposition.
Fix an expansion

〈O1 �O2,A〉|w=w0
=
∑
j

fj(z)⊗O(j) ∈ C∞(U \ {w0})⊗̂D(Mk, (E !)�k)
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such that the functions fj are algebraically linearly independent. Then for each j such that fj(z) is singular
at z = 0, the corresponding observable O(j) is supported at w0, that is,

O(j) ∈ Symk(J (E)∨)⊗ δw0
⊂ D(Mk, (E !)�k)

Instead of providing an abstract proof, let us consider an example illustrating a general feature:

F (z) =

∫
x∈Rn

(∫ L

t1=0

t
−n/2
1 e−|x|

2/t1

)(∫ L

t2=0

t
−n/2
2 e−|x−z|

2/t2

)
ϕ(x)

Here are some observations one can immediately make:

• For t1, t2 > 0, the integral over x is clearly convergent from having the exponential.

• Similarly, for x away from 0 and z, the integral over t is convergent near 0 from the exponential.

• (Above proposition) Each of the integrals does yield a singular function, but it yields a well-defined
integral kernel for z 6= 0, so that the total integral is still convergent if z 6= 0.

Now, for z near zero, this integral will typically diverge. We have
∫ L
t1=0

t
−n/2
1 e−|x|

2/t1 = |x|2−nΓ̃(n, x)

where Γ̃(n, x) is regular (and non-vanishing) at x = 0.
However, since the rate of blow up of this integrand near 0 is polynomial, for some d ∈ N sufficiently

large, if we write our field ϕ(x) = ϕ≤d(x) + ϕ>d where ϕ≤d(x) is the dth order power series expansion of
ϕ at x and ϕ>d vanishes to order d, then in the corresponding decomposition F (z) = F≤d(z) + F>d(z) we
have that F>d is regular at 0.

Thus, we see that the singular contributions all come from F≤d, but this functional only depends on the
power series expansion of ϕ at 0 to order d, and thus is a local functional.

3 Koszul Duality for Factorization Algebras

3.1 Mathematical Background
The fundamental theorem of deformation theory, for instance, as articulated by Lurie in DAG X, says that
over a field k of characteristic 0, there is an equivalence between the∞-category of differential graded Lie
algebras and the one of formal moduli problems. Roughly speaking, the functor Ψ: Lie → Moduli is given
by

Ψ(g)(R) = MC(mR ⊗ g)

for a commutative differential (non-positively) graded algebraR over k. Here mR is fixed by an augmentation
R → k and MC stands for the space of solutions to the Maurer–Cartan equation. To put it another way, one
can find

Ψ(g)(R) = Map
CAlgaug(C

•
CE(g), R) = Map

Lie
(D(R), g)

where C•CE : Lie → (CAlgaug)op is the Chevalley–Eilenberg cochain functor and D : (CAlgaug)op → Lie is
the Koszul duality functor that is the right adjoint to C•CE.

In the same paper, Lurie also discusses a formal moduli problem for an associative algebra. Indeed, the
statement is that if k is a field (of arbitrary characteristic), there is an equivalence between the∞-category of
augmented E1-algebras over k and the one of formal E1-moduli problems. This time, the situation is more
symmetric and the functor Ψ: Algaug → Moduli(1) is given by

Ψ(B)(A) = Map
Algaug(D

(1)(B), A) = Map
Algaug(D

(1)(A), B)

where D(1) : (Algaug)op → Algaug is the Koszul dualty functor. Recall that for an E1-algebra (or a homotopy
associative algebra) A with an augmentation ε : A → k, one can define the Koszul dual algebra D(1)(A) as
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A! = HomA(k, k) where k is understood as a left A-module. We want to read the result as saying that the
Koszul dual algebra of an associative algebra A corepresents the “Maurer–Cartan functor”, namely,

“MC(mA ⊗B) ' Map
Algaug(A

!, B)”

where mA is the augmentation ideal. To put it another way, by applying the Yoneda lemma, we can recover
the Koszul dual algebra A! from the “Maurer–Cartan functor”.

3.2 QFT Interpretation
We would like to understand the QFT interpretation of this statement.

Here is a general set-up. Suppose we have a field theory on R ×X and hence a factorization algebra F
on it. Suppose that the theory is topological along R. Then for each point x ∈ X , the factorization algebra
Fx := F|R×x on R is an E1-algebra which plays the role of A in the above discussion. For simplicity, we
assume that for the projection π : R×X → R, the pushforward π∗F is trivial, namely, π∗F ' C (or C[[~]]
in the quantum case but this will be omitted below).

Note that there is a map of factorization algebras Fx → π∗F on R, because for a small neighborhood
U of x we have R × U ↪→ R × X giving F(R × U) → F(R × X). Now from the assumption, the map
Fx → π∗F can be thought of as an augmentation. Physically speaking, this is a choice of a vacuum.

AsB is another E1-algebra, let us think of it as the algebra of observables of a certain topological quantum
mechanics. It remains to understand the meaning of MC(F0

x⊗B), whereF0
x ⊂ Fx is the augmentation ideal.

The claim is that

MC(F0
x ⊗B) is the space of ways of coupling the two theories.

Proving this in some generality would involve some nontrivial research work, so we will be content with
providing some informal explanation for its few different aspects.

First of all, let us note that it has a classical analogue. That is, if A,B are Poisson algebras, then using a
Lie bracket from a Poisson structure, a Maurer–Cartan element corresponds to coupling at the classical level.

Here is an example. Consider 4d Chern–Simons theory on R2
x,y × Cz . Consider the system of free

fermions on y = z = 0. The space of fields is A ∈ Ω•(R2)⊗̂Ω0,•(C)⊗ g with g = gln and ψ = (ψi, ψ
j) ∈

Ω•(Rx,Cn ⊕ (Cn)∗). We know that free fermions lead to the Clifford algebra B = Cl(Cn) as the algebra of
observables. Hence local observables of the product system are C•CE,~(g[[z]]) ⊗ Cl(Cn). Here C•CE,~(g[[z]])
is an E1-algebra which is quantization of the Chevalley–Eilenberg complex (C•CE(g[[z]], dCE).

Let us take its classical limit; the Clifford algebra becomes Sym((Cn⊕ (Cn)∗)) with the induced bracket
from the pairing 〈−,−〉; hence we end up with a DG Lie algebra

(C•CE(g[[z]])⊗ Sym((Cn ⊕ (Cn)∗)), dCE, 〈−,−〉).

Then its Maurer–Cartan element corresponds to a map of DG Lie algebras g[[z]]→ Sym((Cn⊕(Cn)∗)). For
instance, X 7→ ΦX = (ψ 7→ 〈ψ,X0 · ψ〉) is a map of DG Lie algebras, where X =

∑
Xnz

n ∈ g[[z]] and
we abuse the notation to write ψ ∈ Cn⊕ (Cn)∗. Under our correspondence, this defines a coupling

∫
R ψAψ.

Now let us formulate this in a more conceptual way. Let us assume that (Fx ⊗ B, dFx⊗B) is quantum
observables for topological quantum mechanics. One should imagine dFx⊗B = Q + ~∆, where ∆ is the
BV differential. In particular, it is an E1-algebra which can also be regarded as a DG Lie algebra. If it is
not topological, one has to keep track of the information of Hamiltonian, but the story will essentially be the
same.

From the assumption, we have the local constancy along R, which gives a quasi-isomorphism

Fx ⊗B ' Ω•(R)⊗Fx ⊗B

of DG Lie algebras. Then a Maurer–Cartan element α of Fx ⊗ B corresponds to a Maurer–Cartan element
Oα of the right-hand side, which we expand asOα = O

(0)
α +O

(1)
α whereO(i)

α is of the form degree i. Namely,
we have

dFx⊗Bα+
1

2
[α, α] = 0 ←→

{
dFx⊗BO

(0)
α + 1

2 [O
(0)
α , O

(0)
α ] = 0

ddRO
(0)
α + dFx⊗BO

(1)
α + [O

(0)
α , O

(1)
α ] = 0
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The expected claim is that Sα =
∫
RO

(1)
α is a solution to quantum master equation if and only if α satisfies

the Maurer–Cartan equation. Again, proving it in some generality is work in progress.
Moreover, the assumption that π∗Fx is trivial yields π∗(Fx⊗B) ' B. From this one can observe that we

obtain α ∈ F0
x ⊗B if and only if when we compactify to R we get the trivial deformation of the topological

quantum mechanics.
In sum, MC(F0

x⊗B) realizes a deformation of the Lagrangian as claimed andF !
x is operators of universal

QM system we couple at R× x. This gives all possible ways to couple QM system.
In fact, for 4d Chern–Simons theory, if we want to couple 4d CS with some quantum mechanics with QM

operator B, then most general coupling looks like
∑
n

∫
(∂nzA)aρa[n], where ρa[n] ∈ B. It turns out that for

the coupled system to be anomaly-free, ρa[n] should satisfy some relations, which one can check to be the
relations of the Yangian Y (g).
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