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1 Overview of the Field
Given a “nice” function f : Rd → R, d ≥ 2, or f : M → R with M a compact Riemannian d-manifold
(equipped with some Riemannian metric), the nodal set of f is its zero set f−1(0); if f is Morse, then its
nodal set is a smooth hypersurface. The nodal components of f are the connected components of the nodal
set. The most basic question one is interested is in the nodal count of f , i.e. the total number of the nodal
components of f , which we denote by N (f). Classical and celebrated results in Rd go back to Sturm and
Courant.

Understanding the “typical” nature of the nodal structures of Gaussian random fields, rather than indi-
vidual functions, is an actively pursued subject especially in the last few years. Let us introduce the specific
Gaussian random fields of our focus. The space L2(M) of square-summable functions onM has an orthonor-
mal basis {ϕj}∞j=1 consisting of Laplace eigenfunctions, i.e.

∆φj + t2jφj = 0, (1)

where ∆ is the Laplace-Beltrami operator on M acting on L2, and {tj}j≥0 is its purely discrete spectrum

0 = t0 ≤ t2 ≤ . . . ,

satisfying tj → ∞. For a “band” α ∈ [0, 1) and spectral parameter T > 0 (with the intention of taking the
limit T →∞), we define the random band-limited functions to be

fT (x) = fα;T (x) =
1

|{j : α · T < tj < T}|1/2
∑

α·T<tj<T
cjϕj(x), (2)

where the cj are independent and identically distributed standard Gaussians. For α = 1, we interpret the
summation as

f1;T (x) =
1

|{j : T − η(T ) < tj < T}|1/2
∑

T−η(T )<tj<T

cjϕj(x), (3)

with the convention η(T ) = oT→∞(T ) but η(T ) → ∞; we will drop the subscript α when the context is
clear. The breakthrough works of Nazarov-Sodin [NS09, NS15] demonstrate that as T →∞,

E
[∣∣∣∣ N (fT )

V ol(M) · T 2
− c(d, α)

∣∣∣∣]→ 0 (4)

with c(d, α) > 0 being a universal constant, itself a quantity that has generated tremendous interest.

2 Focus of the Workshop
For the purposes of the workshop, we first let V(M) be the class of all C∞-smooth vector fields on M with
finitely many zeros; the class V(M) is non-empty for every smooth M by the existence of Morse functions
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(that is, we can simply take the gradient field of a given Morse function). For a nodal component γ ⊆ f−1T (0)
and V ∈ V(M) fixed, define

NV (fT , k) := #{γ ⊆ f−1T (0) : γ has precisely k tangencies w.r.t. V }. (5)

Note that we have

N (fT ) =

∞∑
k=0

NV (fT , k), (6)

hence turning the nodal count for fT into a series of counts involving tangencies. Our aim is to understand
various asymptotics, in T , surrounding the distribution of the random variable NV (fT , k).

3 Recent Developments
As inferred in the previous section, one might refine the study of N (fT ) by separately counting the nodal
components of fT belonging to a given topology class T or more generally to a class of some prescribed
geometric type. For the expected Betti number, or the expected number of components of a certain diffeomor-
phism type T , Gayet-Welschinger [GW14] were able to obtain upper and lower bounds for the corresponding
expected values for the Kostlan ensemble, which is different in many aspects from those considered in (2) or
(3). A local refinement of their lower bound was very recently obtained by Wigman [Wig19].

The work of Sarnak-Wigman [SW18] provides some finer results surrounding the count for the com-
ponents of a particular topology T , particularly in the case of ensembles given in (2) and (3). To be more
specific and for the sake of concreteness, take a 3-dimensional (M, g). The work [SW18] shows the existence
of a probability measure µH(2), with support on every element n of Z≥0, where µH(2)(n) gives the expected
limiting fraction of nodal components of f−1T (0) of genus n (in this case, smooth and compact surfaces of
genus n). Moreover, this measure is shown to be universal in the sense of its independence of the geometry
or topology of M but still dependent on the spectral measure for the corresponding scaling limit gα (attached
to the ensemble {fα,T }T>0) and the dimension d.

Building upon the techniques of Nazarov-Sodin and Sarnak-Wigman, Beliaev-Wigman [BW17] addressed
the following question: what is the asymptotic volume distribution of the nodal domains of fT , the sets where
fT is either positive or negative? A similar deterministic universal law to that established in [SW18] was ob-
tained; some basic qualitative properties of the cumulative probability distribution were also proven.

The interaction between tangent/normal spaces to nodal sets and various other geometric quantities of
these submanifolds is another natural topic of study. The work of Dang-Rivière (who themselves were moti-
vated by the work [GW14]) give asymptotics pertaining to the equidistribution (in T ∗M ) of conormal cycles
for fT on general compact manifolds [DR17]. In the setting of the base space M , the study of the distribu-
tion of tangencies to a fixed vector field V ∈ V(M) was initiated in the work of Rudnick-Wigman [RW18],
who considered a count in the arithmetic setting of the flat torus M = Td related to that described in (5),
specifically

NV (fT ) = #{x : V (x) 6= 0, fT (x) = V fT (x) = 0} (7)

where the fT is taken to be a Gaussian toral eigenfunction and V = ζ ∈ Sd−1 a fixed direction. The
authors obtained asymptotics for E [NV (fT )], along with some deterministic results, while the subsequent
work of Eswarathasan [E18] gave asymptotics for Gaussian spherical harmonics on S2 for fixed vector fields
V ∈ V(M).

4 Scientific Progress Made
Let us encapsulate all the individual counts NV (fk) into a single (random) probability measure, the “direction
distribution measure”, as follows:

µf (V ) =
1

N (f)

∞∑
k=0

NV (f, k) · δk, (8)
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on Z≥0. Given two probability measures µ1, µ2 on Z we will use the total variation distance function

D(µ1, µ2) = sup
F⊆Z≥0

|µ1(F )− µ2(F )|. (9)

During our week-long workshop, we were able to establish all the necessary details behind the following:
Theorem: Let (M, g) be 2 dimensional. Given α ∈ [0, 1), there exists a (deterministic) probability measure
µα on Z≥0, supported on the positive even integers 2Z>0, so that for all V ∈ V(M) and every ε > 0,

lim
T→∞

P
(
D(µfα;T

(V ), µα) > ε
)

= 0, (10)

where D(·, ·) is the total variation distance.
This theorem can be seen as the natural next step after those established in [SW18, BW17] with the added

property that the support of our limiting direction distribution measure µα is “essentially half” that of the
connectivity measure introduced by Sarnak-Wigman and is actually independent of V . The remaining case
that we would like to include before publication is α = 1. The approach we took followed that of [SW18]
which itself closely follows that of [NS15]. However, a significant juncture in our methods occurred at the
stage of establishing the stability between the nodal counts involving tangencies for fT and the corresponding
counts for the universal scaling limit gα. Thanks to some elementary differential geometry in the plane, we
were able to reduce the question of counting components whose number of tangencies with respect to V
is precisely k to a question of counting components with precisely k points of (quantitative) transversal
intersection to another set of curves, namely {V fT = 0}.

A critical obstacle that we faced was in showing such components with precisely k transversal intersec-
tions, but that also have at least one intersection that is quantitatively near-degenerate, are few; this was a
crucial part to establishing our desired stability property. A Kac-Rice calculation allowing us to bound an ex-
pected volume however, hinging upon some technical work of Cammarota-Marinnucci-Wigman [CMW16],
allowed us to overcome this roadblock.

As mentioned before, the only missing piece before submitting the paper is to show that band-limited
ensembles for α = 1 give the same measure result as recorded above. The main hurdle en route to this goal is
to apply the barrier method of Nazarov-Sodin [NS09, NS15] with added regularity assumptions and allowing
our target eigenfunctions to have singular nodal sets. We will work out the details of this approach in the near
future.

5 Outcome of the Meeting
We expect to complete the case of α = 1 with relatively few obstructions and hope to subsequently submit
our article for publication. We warmly thank BIRS for its hospitality and an environment which is in many
ways second to none!
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