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1 Short Overview

Following the successful models of the mathematical communities WIN, WINASc, WiSh, WhAM!,
WIT, the one-week collaboration workshop 19w5082 co-organized by Donatella Danielli (Purdue
University) and Irina Mitrea (Temple University), was the first international activity of the newly
founded Women in Analysis (WoAN) research group. The workshop hosted the following collabo-
rative research teams:

1. Complex Analysis

2. Free Boundary Problems

3. Geometric Analysis

4. Harmonic Analysis

5. Inverse Scattering Theory

6. Nonlinear Dispersive Equations

Each team was led by internationally recognized women experts in these fields. Scientific activities
at the workshop included introductory lectures and discussions, collaborative research time, a poster
session for junior participants, and wrap-up sessions in which teams reported on their progress. The
workshop schedule also included a professional development session. Below we will elaborate on the
scientific content of the workshop and the progress registered by the various collaboration teams.

2 Introductory Lectures/Discussions

The goal of these colloquium style lectures and discussions were to introduce all workshop partici-
pants to the history and general developments in each of the emphasis areas.

• Complex Analysis. One of the main themes discussed in the Complex Analysis group
was the Hartog’s triangle in complex Euclidean space and its corresponding formulation in
complex projective space. The Hartog’s triangle in C2 is defined by:

H =:
{

(z, w) ∈ C2 : |z| < |w| < 1
}
.

and is an important example in Several Complex Variables (SCV) as it provides many inter-
esting phenomena in SCV which do not exist in one complex variable. It is the first example
of a pseudoconvex domain which does not admit a Stein neighborhood basis. At the same
time, H is rectifiable but not Lipschitz. It is also a non-tangentially accessible domain, a
recent subject of intense research by many leading harmonic analysts. The specific problems
on the Hartog’s triangle in Complex Euclidean space discussed during the program were:
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1. the density and extension problems in the Sobolev spaces for the Hartog’s triangle in
complex Euclidean space;

2. boundary integral representation formulas for functions holomorphic in the interior of
the Hartog’s triangle that satisfy suitable regularity up to the boundary, and related
questions concerning the notion of Shilov boundary; theory of holomorphic Hardy spaces,
Szegö projection, etc.

The presence of even just a single non-Lipschitz boundary point makes the study of any aspect
of boundary behavior of holomorphic functions much more involved than the analysis of their
interior behavior, and it accounts for the minimal progress to date in the existing literature
for item 2 above.

• Free Boundary Problems. Reaction-diffusion systems with strong interaction terms ap-
pear in many multi-species physical problems as well as in population dynamics. The quali-
tative properties of the solutions and their limiting profiles in different regimes have been at
the center of the community’s attention in recent years. A prototypical example is the system
of equations {

−∆u+ a1u = b1|u|p+q−2u+ cp|u|p−2|v|qu,
−∆v + a2v = b2|v|p+q−2v + cq|u|p|v|q−2v

in a domain Ω ⊂ RN which appears, for example, when looking for solitary wave solutions for
Bose-Einstein condensates of two different hyperfine states which overlap in space. The sign
of bi reflects the interaction of the particles within each single state. If bi is positive, the self
interaction is attractive (focusing problems). The sign of c, on the other hand, reflects the
interaction of particles in different states. This interaction is attractive if c > 0 and repulsive
if c < 0. If the condensates repel, they eventually separate spatially giving rise to a free
boundary. Similar phenomena occurs for many species systems. As a model problem, we
consider the system of stationary equations:{

−∆ui = fi(ui)− βui
∑

j 6=i gij(uj)

ui > 0 .

The cases gij(s) = βijs (Lotka-Volterra competitive interactions) and gij(s) = βijs
2 (gra-

dient system for Gross-Pitaevskii energies) are of particular interest in the applications to
population dynamics and theoretical physics respectively.

The introductory lecture discussed recent advances in the analysis of phase separation phe-
nomena arising in competition-diffusion system. Indeed, phase separation has been described
in the recent literature, both physical and mathematical. Relevant connections have been es-
tablished with optimal partition problems involving spectral functionals. The classification of
entire solutions and the geometric aspects of phase separation are of fundamental importance
as well. The lecture focused on the most recent developments of the theory in connection
with problems featuring:

1. Competition-diffusion problems with fractional laplacians.

2. Competition-diffusion problems with non local interactions.

3. Spiralling solutions in the non symmetrical case.

• Geometric Analysis. The field of geometric flows has been thriving in the past few decades
because of its powerful applications to topology, geometry, analysis, and general relativity. In
many applications, it is important to understand how the flow could continue after a singular
time, by a better understanding of singular formation, which is the focus of our discussion
during the workshop.
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Let (M, g0) by a compact Riemannian manifold without boundary. A solution to the Ricci
flow is a family of metrics {g(·, t)} on M satisfying the deformation ∂g

∂t = −2Ric where Ric is
the Ricci curvature of g(·, t) with g(·, 0) = g0. We say that T is a singular time if there is a
sequence of points pk ∈M and a sequence tk → T such that

Qk = |Rm|(pk, tk) = max
M×[0,tk]

|Rm| → +∞ as k →∞.

A singular model is the limiting metric g∞ = limk→+∞ gk where gk(·, t) = Qkg(·, tk + tQ−1
k )

are the appropriate rescaling metrics corresponding to {pk}. If the blow-up rate of Qk is
sublinear in T − tk, which in particular implies it must be linear in T − tk, the singularity is
called Type I. All other singularities are called Type II.

We now turn to the mean curvature flow, which is an extrinsic geometric flow that deforms
hypersurfaces in Rn+1. Let M be a complete hypersurface in Rn+1 and let F (x, t) : M ×
[0, ε) → Rn+1 be a family of immersions parametrized by t with F (·, 0) = M . The mean
curvature flow is a solution F whose speed of deformations is given by the mean curvature
vector at each instant time, that is, ∂F

∂t = −Hν, where ν is the outward unit normal to
Mt = F (·, t) and the mean curvature is H = −divMtν. If M is compact, the mean curvature
flow must stop at a finite time by avoidance principle. One can similarly define the singular
models and types as for the Ricci flow.

There are many similarities between the two flows, they are both gradient flows and in both
flows the monotonicity formula has been discovered, in the mean curvature flow by Huisken
and in the Ricci flow by Perelman. Those monotonicity formulas play important role in
singularity analysis in both flows. Three main topics that the Geometric Analysis groups is
interested in pursuing are (1) Ricci flow solutions with degenerate neck-pinches, (2) Stability
of cylindrical solutions to the Ricci flow, and (3) Stability of translating solutions to the mean
curvature flow.

• Harmonic Analysis. Pattern identification in sets has long been a focal point of interest in
geometry, combinatorics and number theory. No doubt the source of inspiration lies in the
deceptively simple statements and the visual appeal of these problems. A few prototypical
examples discussed in the introductory part of the workshop where:

1. A set occupying a positive proportion of the natural numbers contains arbitrarily long
arithmetic progressions (AP-s). This affirmative answer by Szemerédi to the famous
Erdös-Turán conjecture is one of the masterpieces of modern mathematics [24, 14], and
a trendsetter in this field. More generally, given a set A ⊆ Zd with positive density, i.e.,

lim sup
N→∞

#
(
A ∩ [−N,N ]d

)
# ([−N,N ]d)

= d(A) > 0, where #(A) = cardinality of A,

and any finite configuration S ⊆ Zd (say a polytope), A has infinitely many Z-affine
copies of S.

2. Contrast this with a problem in the Euclidean setting. A set S ⊂ R is said to be universal
if every set of positive Lebesgue measure contains an affine copy of S. A classical theorem
of Steinhaus shows that all finite sets are universal. A famous question of Erdös [12] asks:
does there exist an infinite universal set? Despite its superficial analogy with Szemerédi-
type questions in Zd, this problem remains unsolved. All results to date merely establish
that certain infinite structures are non-universal [13, 6, 16]. In particular, we do not even
know if {2−n : n ≥ 1} is universal.

3. Alternatively, one could ask for a set containing all sufficiently large copies instead of
infinitely many affine copies. A result of Bourgain [5] says that if A ⊆ Rd has positive
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upper density, i.e.,

lim sup
R→∞

|A ∩BR|
|BR|

= δ(A) > 0, where |·| = Lebesgue measure, BR = {x ∈ Rd : |x| < R},

and S ⊆ Rd is any set of d points spanning a (d − 1)-dimensional hyperplane (e.g. a
line in R2 or a triangle in R3), then there exists `0 such that A contains an isometric
copy of `S for every ` > `0. The corresponding statement when #(S) > d is not known,
though there are some partial results [25]. For instance, we do not know if a set in R3

of positive upper density contains all sufficiently large regular tetrahedra.

These problems share the common feature that they aim to identify patterns in thick sets.
There is now an immense variety of results in this genre, asserting existence or avoidance
of configurations under assumptions on size, often stated in terms of measure, dimension
or density. While this body of work has contributed significantly to our understanding, a
complete picture is yet to emerge. Not surprisingly, such questions are nontrivial when posed
for a thin set whose content is insignificant when measured on some of these scales.

• Inverse Scattering Theory. The introductory lecture/discussion was concerned with in-
verse scattering, i.e., inverse problems for linear hyperbolic partial differential equations which
model sound, electromagnetic or elastic waves. We discussed in particular setups where a col-
lection (array) of sensors probes a heterogeneous medium with signals and measures the
resulting wave. The goal of the inverse scattering problem is to process these measurements
in order to determine the heterogeneous medium, the so-called reflectivity function.

The introductory lecture considered such a problem, for the case of broadband probing signals
and time resolved array measurements, at regular time sample intervals T . It discussed a novel
reduced order modeling (ROM) strategy, where the reduced order model is a proxy of the
wave propagator, which is the operator that takes the wave at a given time t and maps it to
the wave at the next time step t+ T . The ROM has the following important properties:

1. It is data driven, meaning that it can be obtained just from the array measurements,
without any knowledge of the medium.

2. It is a matrix of size determined by the number of sensors in the array and the duration
of the measurements and yet, it fits the array measurements exactly.

3. The ROM corresponds to a Galerkin projection of the wave propagator operator on an
approximation space that is spanned by the wave field at the sample time instants (so
called solution snapshots).

4. The ROM is a matrix with special algebraic structure that allows an efficient (well
conditioned, almost linear) inversion procedure for determining the unknown reflectivity
of the medium.

The lecture described the construction of the ROM, proved its main properties and showed
how it can be used for solving inverse scattering. The theoretical analysis of the ROM based
inversion requires further analysis, which is why it was presented at the beginning of the
conference.

• Nonlinear Dispersive Equations. The introductory efforts of this group were focused
on presenting recent results on the short and long time dynamics of solutions to nonlinear
Schrödinger equations (NLS). The Schrödinger equation is arguably the most famous one
in the class of dispersive nonlinear equations, and it plays a fundamental role in quantum
mechanics.

4



The team leaders emphasized the striking difference between the behavior of solutions to
the NLS when no boundary data are imposed, hence wave solutions can disperse1 without
encountering any obstacle, versus when boundary data, such as the periodic ones, are given as
a constraint. In this case dispersion does not happen, and to the contrary, the wave solutions
may be periodic in time, a situation that happens for example in 2d, when the ratio between
the two periods is a rational number. The leaders reported on the most recent advances in
the study of periodic solution to the NLS equation, while emphasizing the many different
mathematical tools, taken for example from analytic number theory, probability, dynamical
systems, symplectic geometry and more, that have been used to make this progress. An idea
of how these tools have been used and a list of open questions were also presented during the
lecture.

3 Team Progress Reports

A summary description of the specific problems attacked by the research groups participating in
the workshop is as follows.

• Complex Analysis. With the participation and involvement of the Harmonic Analysis
group, led by Almut Burchard and Malabika Pramanik, during the workshop significant
progress was made towards the solution of the aforementioned density and extension prob-
lems in the Hartog’s triangle. Though details are yet to be verified, it seems that recently
obtained results in harmonic analysis can be employed to resolve the questions raised in the
density and extension problems in the Sobolev spaces for the Hartog’s triangle in complex
Euclidean space. Group discussions lead by Loredana Lanzani ignited a new and ongoing col-
laboration involving Anne-Katrine Gallagher; Purvi Gupta; Loredana Lanzani and Liz Vivas.
Progress has already been made on several among the questions raised on the boundary inte-
gral representation formulas for functions holomorphic in the interior of the Hartog’s triangle
that satisfy suitable regularity up to the boundary.

Further activities at the workshop included a follow-up discussion led by Mei-Chi Shaw on
the Hartog’s triangle in complex projective space, which exhibits distinct features from its
Euclidean counterpart due to the presence of positive curvature. In this context several ques-
tions were raised pertaining complex foliations, which are equivalent to limit cycles in the real
setting; also the question of existence of Levi-flat hyper surfaces without singularities, which
arises from complex foliation theory and is of interest to the complex dynamics, topology and
geometry communities.

• Free Boundary Problems. The following problem has been introduced to the junior team
members by Susanna Terracini. A classic free boundary problem arises by considering a
model of segregated populations. Suppose that there are N segregated populations occupying
a bounded domain Ω. The optimal space occupied by each population is represented by the
positivity set of the respective function ui, for i ∈ {1, 2, . . . , N}, and where the ui minimize
the following energy:

E = min
{∫

Ω

N∑
i=1

|∇ui|2 : ui|∂Ω = ϕui and uiuj = 0 for i 6= j
}
,

under a boundary condition induced by given functions ϕui on ∂Ω. A major problem is
to understand the free boundary, which in this case is the boundary between the different

1In this case dispersion means that the amplitude of the wave tends to zero as the time tends to infinity, while
the energy of the system remains constant.
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Figure 1: A potential buffer region between two populations that are ε apart.

populations within Ω. To understand the free boundary, it is useful to look at the domain
variation formula. For Y ∈ C∞0 (Ω) let{

Φ̇t = Y (Φt)
Φ0(x) = x.

be a local variation. Then the domain variation formula is found by computing

d

dt

∣∣∣
t=0
E(Φt(Ω)) .

From the expansion of the first variation one may recover a reflection law which describes the
symmetry with which two functions ui and uj approach their common boundary, and using
Almgren’s monotonicity formula, further regularity results, including that the boundary is
mostly regular outside of a small singular set which is small in the sense of dimension.

A related problem is to understand segregated populations in the case where there is a buffer
zone between the populations. In this case one minimizes:

Eε(u) = min
{∫

Ω

N∑
i=1

|∇ui|2 : ui|∂Ω = ϕui and dist(spt{ui}, spt{uj}) ≥ ε for i 6= j
}

where spt is the support of the given function.

Progress on this problem has been made in the works of Soave, Tavares, Terracini, and Zilio
(2018) and of Caffarelli, Patrizi, and Quitalo (2017). More work is required to get regularity
of the free boundary because they need to address shapes like the following: suppose that
you have two populations in a cylinder, where the boundary takes a scalloped shape for
each population formed by semi-circles of radius ε connected in a line, and offset so that the
boundaries are constantly ε apart. While this set does have singular set of small dimension,
it is expected that one should be able to show that this arrangement is not a candidate even
to be a local minimizer, perhaps by using the domain variation formula. This problem is
interesting for fixed ε = 1, or as a variational problem where ε is sent to 0, so that the
potentially invalid arrangement approaches a minimizer for the classic segregation problem
in the limit.

• Geometric Analysis. The team reported work in the following directions.

1. Ricci flow solutions with degenerate neck-pinches. For Ricci flow, a family of
“dumbbell” initial metrics leads to two drastically different singular models: either spher-
ical or non-degenerate cylindrical singular model, depending on the ratio between the
radius of the neck and the radii of two balls of the initial dumbbell manifold. A dumb-
bell metric at the threshold ratio gives rise to the so-called peanut solution, which was
shown to exist rigorously by Angenent, Isenberg, Knopf in 2015. The peanut solution
gives two different singular models, depending on the choice of the sequence of points
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pk. If {pk} goes to the neck region, the resulting singular model is degenerate cylindrical
and if {pk} goes to the ball region, the resulting singular model is the Bryant soliton.
Such peanut solution is expected to be an unstable solution to the Ricci flow, so it is in
general difficult to construct. Our ultimate goal is to show that the peanut solution is
unstable. A closely related counterpart is the following question.

Problem 1. Show that a doubly warped Berger metric on S1 × S3 gives rise to a Ricci
flow solution similar to the peanut solution, in the sense that its normalized Ricci flow
converges to a normalized peanut solution.

The group discussed how the peanut solution (with rotational symmetry) is constructed
in the original two papers of Angenent, Isenberg, and Knopf. Their approach suggests
to first derive a formal expansion of the warping factors of the metrics and then show
the formal solution exists.

2. Stability of cylindrical solutions to the Ricci flow. As discussed above, the cylin-
drical solution to the Ricci flow appears naturally as a singular model. It gives rise to
the natural question of how “stable” a cylindrical solution is.

Problem 2. Let g0 be the standard cylindrical metric defined on R × S3. Show that
there is ε > 0 so that if g is in an ε-neighborhood of g0 (in a suitable topology), then the
Ricci flow solution of g converges to the solution of g0, in the sense that the normalized
solution converges to g0, after a diffeomorphism change.

The group discussed the first step to understand the long time existence of the normalized
solution g̃t. It relies on analyzing the linearized normalized Ricci flow equation and
employing the de Turck trick to eliminate the diffeomorphism group. The second step is
to provide estimates on g̃t and show that up to a diffeomorphisms the flow converges to a
normalized cylindrical solution as t→∞. We plan to understand the work of Schnürer,
Schulze, and Simon where they prove stability of Euclidean space, as well as hyperbolic
space, under the Ricci flow.

3. Stability of translating solutions to the mean curvature flow. Let M be a
hypersurface in Rn+1. We say that M is a translating solution if F : M × [0, ε) sat-
isfies ∂F

∂t = −w for a w is a constant vector in Rn+1, where F a family of immersions
parametrized by t. Comparing with the mean curvature equation discussed above, a
translating solution to the mean curvature flow, sometimes called the translator, must
satisfy H = 〈ν, w〉. Much progress has been made to classify translators. For surfaces
in R3 that are contained in a slab (−π/2, π/2)× R2 ⊂ R3, there are only three types of
translators: Bowl solitons, Grim reaper planes, and the delta-wing solutions.

Problem 3. Let M0 be a graphical surface in R3 defined on a slab (−π/2, π/2)×R ⊂ R3.
Suppose that M0 is asymptotic to the two vertical planes that bound the slab. Then the
mean curvature flow Mt converges to either grim reaper plane or the delta-wing solution.

The team first discussed the long time existence of Mt. It relies on a general interior
gradient estimate of Ecker and Huisken and the gradient estimate toward the boundary
in the recent work of Spruck and Xiao. We believe that the pancake solutions of Bourni,
Langford, and Tinaglia would give barriers to guarantee that the solution Mt stays in
the same slab and converges to a nontrivial solution. Last, to show that the solution
converges to a translating solution, the group may employ the techniques in the recent
work to Choi, Choi, and Daskalopoulos for the Gauss curvature flow.

• Harmonic Analysis. The introductory harmonic analysis discussions provided an overview
of results concerning geometric and analytic configurations that exist in sparse sets in Eu-
clidean spaces. Here sparsity implies zero Lebesgue measure and size is phrased in terms of

7



finer notions such as Hausdorff or Fourier dimensions, occasionally with additional structures.
The background literature on a few questions of the following flavor were discussed in the
group meetings:

1. Does a set in R with dimension α < 1 contain algebraic patterns, such as arithmetic
progressions, or solutions of a translation-invariant linear equation? If so, are such
patterns abundant in some quantifiable sense?

2. Does a sparse set in R2 contain geometric configurations such as vertices of a right
triangle?

Looking ahead, one can formulate more refined questions. Lower-dimensional surfaces such as
curves and hypersurfaces yield a class of thin sets in Rd for d ≥ 2 that arise naturally from the
differential geometry of Euclidean spaces. The induced surface measure on such sets is rich
in geometric and analytic structure. It is the source of a vast literature and the inspiration
of the following genre of questions, the study of which is one of the long-term research goals
of the harmonic analysis group:

1. For d ≥ 1 and 0 < α < d, α 6∈ Z, do there exist sparse subsets of Rd with Hausdorff
dimension α supporting measures that behave in some quantifiable sense like the induced
Lebesgue measure on surfaces in Rd?

2. What properties of fractal sets ensure/prevent analytic and geometric phenomena seen
on manifolds?

3. What are the scope and the limitations of Fourier-analytic methods in such problems?

The group also discussed four problems on sumsets and convolutions. The Minkowski sum
A + B = {a + b | a ∈ A, b ∈ B} arises frequently in the study of convolution operators. It
is typically large compared to the individual sets; the general principle is that small sumsets
imposes strong geometric and arithmetic constraints on the sets. We propose four problems
that seek to quantify these constraints.

For non-empty sets A,B ⊂ Rd, the Brunn-Minkowski inequality |A + B|
1
d ≥ |A|

1
d + |B|

1
d

provides a fundamental lower bound on the volume of the sumset. Equality holds only if the
sets A and B are scaled and translated copies of the same convex set K [Henstock-Macbeath
1953, Hadwiger-Ohmann 1956].

1. If the Brunn-Minkowski inequality holds with near-equality for two sets A,B, must they
be close to homothetic and convex? (How close?)

Affirmative answers are known in certain cases, for example when A and B are convex, when
the two sets are comparable in volume, and in one dimension [Christ, Figalli, Jerison, Maggi,
Pratelli and others since 2010]. The general problem, for sets of disparate size, is open.

Much of the recent progress on this problem is motivated by additive combinatorics, where
the study of sets with small sumsets has been a core problem for almost 100 years. For finite
sets of integers, the cardinality of A+B can be as large as the product |A| · |B|; a lower bound
is |A+B| ≥ |A|+ |B| − 1. Equality occurs only if A and B are arithmetic progressions with
the same increment. Large sets with small sumsets were characterized in terms of generalized
arithmetic progressions by Freiman [1973] and Ruzsa [1994].

2. Among subsets C ⊂ N of given cardinality, which have the largest number of decompo-
sitions as sumsets (modulo translations)?

One may suspect that arithmetic progressions may be the answer also here. there is a
surprising connection with lunar arithmetic, an exotic algebra on the nonnegative integers
[Applegate-LeBrun-Sloane 2011, G. Gross 2019].
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One of the functional versions of the Brunn-Minkowski inequality is the Riesz-Sobolev in-
equality, that convolution integrals of the form

∫
Rd f ∗gh can only increase under symmetric

decreasing rearrangement of the three functions. The characterization of equality cases is
quite complicated and depends on the relative size of the level sets of the three functions
[Burchard 1994]. The Brunn-Minkowski inequality is equivalent to the special case of indi-
cator functions of sets that are in a critical size relation. Analogous inequalities hold on the
integers [Hardy-Littlewood-Polya 1934] and on the unit circle S1 [Baernstein 1989]. Equality
and near-equality cases on R and S1 were classified by Christ [2013] and Christ-Iliopoulou
[2018].

3. Are there any other groups that admit rearrangement inequalities of Riesz-Sobolev type?
What are the obstructions?

It is a folklore result that Riesz-Sobolev inequalities cannot hold on the special orthogonal
groups SO(d) for d > 2, and perhaps on no other groups. It would be interesting to work
out a rigorous proof and identify the precise nature of the geometric obstruction. Part of the
question is how to define a suitable rearrangement. One possible approach is to construct
the rearrangement in a different space. For example, S1 has proved useful as a comparison
space for compact connected Abelian groups [Kneser 1956, Candela-De Roton 2016, Tau 2018,
Christ-Iliopoulou 2018].

We close with an intriguing problem that connects additive combinatorics with the geometry
of Banach spaces, due to Oleskiewicz [2016]. To state the question, let us call a subset of a
metric space well-separated, if any two distinct points in the set have distance at least 1.

4. Let A,B be non-empty finite subsets of a normed vector space. If A and B are well-
separated, does A+B contain a well-separated subset C of cardinality |C| = |A|+|B|−1?

The answer is known to be positive when the norm is Euclidean [Oleskiewicz 2016], and when
one of the sets has only one or two elements. It is open in all other cases, even for the spaces
`p with p 6= 2 in dimension two.

• Inverse Scattering Theory. The team reported on two research problems:

1. Reduced order model: The ROM based inversion methodology was discussed by our
group throughout the week, for both the setup in the lecture as well as for inversion
with time harmonic waves and in anisotropic media. The group identified a few analysis
problems to work on. In particular, the study of the dependence of the Galerkin projec-
tion on the unknown reflectivity was determined to be important and of interest to the
group.

2. Transmission eigenvalues: This problem arises in the analysis of scattering operator
for inhomogeneous media of compact support. It is a non-selfadjoint and non-linear
eigenvalue problem for a set of two elliptic PDEs defined in the support of inhomogeneity
and sharing the same Cauchy data on the boundary. Transmission eigenvalues relate to
interrogating frequencies for which there is an incident field that does not scatter. They
can be determined from scattering data, hence can be used to obtain information about
scattering media. Our group was interested in two main open theoretical questions: a)
spectral properties of this eigenvalue problem in the case when contrast in the media
changes sign up to its boundary, and b) regularity assumptions on the given media for
which a transmission eigenvalue is indeed a non-scattering frequency, i.e. understanding
when it is possible to extend eigenfunctions corresponding to incident waves outside the
support of inhomogeneity as a solution of PDEs governing the background.
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• Nonlinear Dispersive Equations. During the week spent at Banff the Nonlinear Dispersive
PDE group centered their discussion mainly on two projects.

1. The first project, that involves D. Mendelson, A. Nahmod, N. Pavlovic and G. Staffi-
lani, is related to the active area of research of deriving effective evolution equations
from many-body quantum systems. One important and ubiquitous example of a limit-
ing effective equation is the NLS equation mentioned above, which more in details is a
scalar dispersive equation which describes in a certain regime the evolution of a system
of infinitely many bosons with a two particle interaction. The NLS equation is an impor-
tant model in its own right, as both a representative example of an infinite dimensional
Hamiltonian system, and, in the one dimensional cubic case, an example of an integrable
PDE. Recently, our group together with M. Rosenzweig, a PhD student at UT Austin
under the supervision of N. Pavlovic, has been able to derive geometric aspects of the
Hamiltonian structure of the NLS equation from the many-body quantum model. More-
over, we have been able to connect the integrability of the scalar NLS equation with
integrability for a certain system of equations, called the GP hierarchy, which models
the interaction between infinitely many quantum particles and arises in the derivation
of the NLS equation from the finite particle models.

While at the workshop at BIRS, the group discussed several possible extensions to this
recent work. The first direction, which seems very promising, is related to the connec-
tion between the NLS equation and the Vlasov equation. Specifically, in the so-called
semi-classical limit, solutions of the NLS equation tend to solutions of the Vlasov equa-
tion. A natural question is thus “what happens to the geometric Hamiltonian structure
associated to the NLS?”. We believe, after some preliminary investigation, that our
techniques should enable us to derive a Hamiltonian structure for the Vlasov equation
from a classical finite particle system.

2. The second project, which involves M. Czubak, A. Nahmod, G. Staffilani and X. Yu, is
based on a question proposed by Luis Vega. Consider the following NLS equation in one
spatial dimension:

iut + uxx = |u|8u. (3.1)

Here u : R × R → C is a complex-valued function of time and space and the scaling
invariant Sobolev norm is H

1
4 . The goal is to study the long time dynamics for this

initial value problem, namely global well-posedness (GWP) and scattering when the

initial data are taken in H
1
4 .

It is known that given an initial data u0 with finite energy, that is u0 ∈ H1, due to energy
conservation, and the fact that H1 is a subcritical norm in this case, GWP and scattering
is well understood, while at the critical regularity, u0 ∈ Ḣ

1
4 , a similar argument only

gives small data GWP and scattering results. If one considers intermediate (but still
subcritical) regularity, that is u0 ∈ Hs, 1

4 < s < 1, then one can combine the I-method
and the following Morawetz estimate for the solution u of (3.1):

‖u‖8L8
t,x

. ‖u0‖6L2
x
‖u‖2

L∞
t Ḣ

1
2
x

(3.2)

to prove the GWP and scattering for data u0 ∈ Hs, s > 8
11 . During the discussion at

Banff X. Yu noticed that if we replace the Morawetz estimate (3.2) by the one derived
in Planchon-Vega [21]:

‖u‖12
L12
t,x

. ‖u0‖2L2
x
‖u‖2

L∞
t Ḣ

1
2
x

, (3.3)

we are able to improve the index for GWP and scattering to s > 4
7 . Note that this index

still leaves a gap if one want to reach the critical regularity. Following a suggestion by L.

10



Vega we would like to consider this GWP and scattering problem from another point of
view, which would be new also for other dispersive equations. Instead of concentrating
the study of the global dynamics for the NLS equation (3.1) on the analysis of the
behavior in time of the solution in terms of Sobolev and Lp norms, we want to analyze
the asymptotic behavior in time of the more natural h(t) quantity defined in the proof
of Planchon-Vega [21]:

h(t) :=

∫
R

∫
R
|u(t, x)|2|u(t, y)|2|x− y| dxdy. (3.4)

The second derivative of h(t) in essence gives the Morawetz estimates, which encodes the
fact that some Lp norm is decaying in time, which in turn implies scattering. Therefore
this h(t) function is closely linked to the scattering of the NLS equation (3.1), and it
should be the right quantity to look at to prove scattering.

4 Poster Session Research Themes

The following scientific themes have been discussed at the poster session.

• A generalized radial Brèzis-Nirenberg problem. In a poster presentation by Soledad
Benguria, Mathematics Department, University of Wisconsin the following problem was dis-
cussed. In an 1983 paper Brèzis and Nirenberg consider

−∆u = λu+ up in Ω, (4.5)

where Ω is a bounded, smooth, open subset of Rn, n ≥ 3, with u > 0 in Ω and u = 0 in
∂Ω. Here p = (n + 2)/(n − 2) is the critical Sobolev exponent. They show there are no
positive solutions to (4.5) if λ ≥ λ1, where λ1 is the first eigenvalue of −∆ in Ω. And if Ω is
star-shaped, there are no solutions if λ ≤ 0. However, the existence of solutions for 0 < λ < λ1

depends on the dimension of the space.

In fact, if n ≥ 4, then there is a solution u ∈ H1
0 (Ω) for all λ ∈ (0, λ1). But if n = 3, there

is a positive λ∗(Ω) such that (4.5) has no solution if λ ≤ λ∗, and (4.5) has a solution if
λ ∈ (λ∗, λ1). If Ω is a ball, then λ∗ = λ1/4. Many variants of (4.5) have been studied. Among
others, the Brèzis-Nirenberg problem in other spaces of constant curvature, such as Sn and
Hn (see, e.g., [3], [22], [8], [4]).

The problem that Benguria and her collaborators attacked is as follows. Let R ∈ (0,∞)
and let a be a smooth function such that a ∈ C3[0, R]; a(0) = a′′(0) = 0; a(x) > 0 for all
x ∈ (0, R); and limx→0 a(x)/x = 1. Given n ∈ (2, 4), the goal is to study the existence of
positive solutions u ∈ H1

0 (Ω) of

−u′′(x)− (n− 1)
a′(x)

a(x)
u′(x) = λu(x) + u(x)p (4.6)

with boundary condition u′(0) = u(R) = 0. Notice that the radial Brèzis-Nirenberg prob-
lem on the Euclidean space corresponds to taking a(x) = x; on the hyperbolic space, to
taking a(x) = sinh(x); and on the spherical space, to taking a(x) = sin(x). Benguria shows
that this boundary value problem has a positive solution if λ ∈ (µ1, λ1). Here, λ1 is the

first positive eigenvalue of y′′ + a′

a y
′ +

(
λ− α2

(
a′

a

)2
+ αa

′′

a

)
y = 0 with boundary condi-

tions limx→0 y(x)xα = 1; and µ1 is the first positive eigenvalue with boundary conditions
limx→0 y(x)x−α = 1, with α = (2 − n)/2. She also obtains non-existence and uniqueness
results.
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• Aharonov–Bohm operators in planar domains. The poster by Laura Abatangelo (Uni-
versity of Milan - Bicocca) concerned possible multiple eigenvalues for the so-called Aharonov–
Bohm operators. These operators are special as they present a strong singularity at a point
(pole), for they cannot be considered small perturbations of the standard Laplacian. More
precisely, for a = (a1, a2) ∈ R2 and α ∈ R \ Z, we consider the vector potential

Aαa (x) = α

(
−(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2

)
, x = (x1, x2) ∈ R2 \ {a},

which generates the Aharonov-Bohm delta-type magnetic field in R2 with pole a and circula-
tion α; such a field is produced by an infinitely long thin solenoid intersecting perpendicularly
the plane (x1, x2) at the point a, as the radius of the solenoid goes to zero and the magnetic
flux remains constantly equal to α. So, they are responsible of the so-called Aharonov–Bohm
effect: in a quantum mechanics context, a charged particle living in this region is affected by
the presence of a magnetic field even if this is zero almost everywhere.

From an analytic point of view, the particle’s dynamics is described by solutions to Schrödinger
equations, where the (stationary) operators are defined as

(i∇+Aa)
2u = −∆u+ 2iAa · ∇u+ |Aa|2u

acting on functions u : Ω ⊂ R2 → C. As one can easily understand, in the last years,
a particular interest has been devoted to the spectrum of the stationary operator defined
above. In particular, the spectrum is stable under small movement of the pole. Moreover,
small movements of the pole can make a double eigenvalue to be simple in many situations.
When the domain posseses strong symmetries, it seems that it can remain simple not only
for small movements, but also globally in the domain.

The two main results achieved in this direction are the following

Theorem 4.1 ([2]). Let 0 ∈ Ω and α0 ∈ {1
2} + Z. Let n0 ≥ 1 be such that the n0-

th eigenvalue λ := λ
(0,α0)
n0 of (i∇ + Aα0

0 )2 with Dirichlet boundary conditions on ∂Ω has
multiplicity two. Let ϕ1 and ϕ2 be two orthonormal in L2(Ω,C) and linearly independent
eigenfunctions corresponding to λ. Let ck, dk ∈ R be the coefficients in the expansions

ϕ
(a,α)
k (a + r(cos t, sin t)) = ei

t
2 r1/2

(
ck cos t

2 + dk sin t
2

)
+ o(r1/2). If ϕ1 and ϕ2 satisfy both

the following

(i) c2
k + d2

k 6= 0 for k = 1, 2; (ii)
∫

Ω(i∇+Aα0
0 )ϕ1 ·Aα0

0 ϕ2 6= 0;

(iii) there does not exist γ ∈ R such that (c1, d1) = γ(c2, d2);

then there exists a neighborhood U ⊂ Ω× R of (0, α0) such that the set

{(a, α) ∈ U : (i∇+Aαa )2 admits a double eigenvalue close to λ} = {(0, α0)} .

Theorem 4.2 ([1]). Let λ
(a,

1
2 )

1 be the first eigenvalue on the disk. Then λ
(a,

1
2 )

1 is simple if
and only if a ∈ (−1, 1) \ {0}.

• Recovering Riemannian metrics from least-area data. This poster was presented
by Tracey Balehowsky (Postdocoral Researcher at the University of Helsinki) and contained
her joint work with Spyros Alexakis and Adrian Nachman (Professors at the University of
Toronto). The following question was considered: Given any simple closed curve γ on the
boundary of a Riemannian 3-manifold (M, g), suppose the area of the least-area surfaces
bounded by γ are known. From this data may we uniquely recover g?
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This question can be thought of as an n − 2 codimensional version of boundary rigidity,
wherein one seeks to determine the metric g given knowledge of the geodesic distance d(x, y)
between any two points x, y on the boundary of M . In the cases where this is possible, we
say the manifold is boundary rigid. The problem of boundary rigidity has been solved in 2
dimensions, but remains open in higher dimensions.

The poster summarized some of the history of the problem of boundary rigidity, highlighting
the works of Michel [18], Gromov [15], Croke [11], Pestov and Uhlmann [20] (which settled
the 2D case), Lassas et. al. [17], Burago and Ivanov [9, 10], and Stefanov et. al. [23]. It
also contained a brief description of the obstacles to boundary rigidity as motivation for the
analogous obstacles one faces when instead considering least-area data instead of distances.

Next presented were three theorems which gave conditions when one can uniquely recover (up
to boundary-fixing diffeomorphisms) the Riemannian metric g, given knowledge of the areas
of least-area surfaces circumscribed by simple curves on the boundary of M . The results
do not require this area data for all such simple curves on the boundary; rather just certain
families of curves.

1. The first theorem addressed the question of what is the least amount of area data
possible to achieve global uniqueness. It showed that if the metric was either C3-close to
Euclidean or “straight-thin”, knowledge of the areas of least-area surfaces with boundary
given by a leaf of a particular 1-parameter family of foliations of the boundary by simple
curves was enough to uniquely determine the metric.

2. The second theorem was a global uniqueness result which demonstrated that the cur-
vature conditions of the first theorem could be relaxed if more data was given and an
additional foliation structure was assumed. This theorem showed that if the manifold
was of the type which “admitted foliations from all directions”, knowledge of the areas
of the least-area surfaces arising as leaves in the admitted foliations uniquely recovered
the metric.

3. The third theorem was a local result which showed that if the boundary ∂M was strictly
mean convex at p ∈ ∂M and one knows the areas of a certain 2-parameter family of
least-area surfaces which are near p, then the metric is uniquely determined in a small
neighbourhood V ⊂ M containing p. It was emphasized that a key starting point for
all the results presented was that the area data gave information about the Dirichlet-
to-Neumann map for the Jacobi operator on the 2-dimensional least-area surfaces, from
which curvature information was determined via the result of Nachman [19].

• The Mixed Boundary Value Problem for the Laplacian in Non-Smooth Domains.
The poster, presented by Katharine Ott from Bates College, summarized results regarding
well-posedness of the Lp-mixed boundary value problem in Lipschitz domains for the Lapla-
cian. The theorems presented have appeared in a series of recent papers with coauthors H.
Awala, R. Brown, S. Kim, I. Mitrea, and J. Taylor.

To give a sense of the work presented, consider the case of the Lp-mixed problem for the
Laplacian. In this setting, let Ω be a bounded open set in Rn, n ≥ 2, and let ∂Ω = D ∪N ,
where D is an open subset of the boundary and D ∩N = ∅. Then the boundary problem is
given by 

∆u = 0 in Ω,

u |D = fD ∈W 1,p(D),

∂νu |N = fN ∈ Lp(N),

(∇u)∗ ∈ Lp(∂Ω).

(4.7)

Above, ∂ν denotes differentiation in the normal direction. For any function v : Ω → R, v∗

stands for the non-tangential maximal function.
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The first result is well-posedness (meaning existence and uniqueness of solutions) of the Lp-
mixed problem for the Laplacian in Lipschitz domains for a range p ∈ (1, 1 + ε) under a mild
assumption on the boundary between D and N (the Dirichlet and Neumann portions of the
boundary, respectively). It is important to note that well-posedness in L2 may actually fail
and thus the result for small p > 1 is, in a sense, optimal. An important step in the proof
of well-posedness of (4.7) (and similarly in the case where the Laplacian is replaced with the
Lamé system of elastostatics) is establishing decay of solutions when the boundary data is
an atom. This decay is encoded in estimates for the Green function for the mixed problem,
which constituted the second theorem of the poster.

The final portion of the poster addressed an alternative approach to studying the Lp-mixed
problem for the Laplacian in the special case where Ω ⊂ R2 is the infinite upward sector with
vertex at zero and aperture θ ∈ (0, 2π). Here, we define the left edge of the sector to be D
and the right edge of the sector to be N . Under these conditions, we can translate (4.7) into
an integral boundary equation. The solvability of this aforementioned equation hinges on
whether or not an associated integral operator is invertible on the prescribed function spaces.
This approach results in a sharp well-posedness results for (4.7).
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l’École Normale Supérieure Quatrième Série 42 no. 2 (2009) 261-290.
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