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In 1977 Philip Anderson shared the Nobel Prize in Physics with his doctoral thesis advisor John van Vleck
and his collaborator Nevill Mott. The Nobel Prize was awarded “for their fundamental theoretical investiga-
tions of the electronic structure of magnetic and disordered systems”, or, in other words, for the discovery
of what is nowadays called Anderson localization. In condensed matter physics, Anderson localization is
the absence of diffusion of waves in a random (disordered) medium. A popular, though not quite equivalent,
mathematical justification of (spectral) Anderson localization is pure point spectrum of the corresponding
Schrödinger operator with random potential, along with exponentially decaying eigenfunctions.

Many random models aside from Schrödinger operators with potentials given by iid random variables at
each site of a finite-dimensional lattice have been considered, for example sparse random potentials, decaying
random potentials, the “trimmed” Anderson model, and the Anderson model on regular trees. But most
of the existing methods of proof either require some form of absolute continuity of the randomness (e.g.,
the Kunz-Souillard method, the fractional moment method, or spectral averaging), or use a highly involved
and technically challenging machinery (e.g. multiscale analysis). At the same time, recently it became
clear that theory of random matrix products can be used to provide more geometrical and transparent proofs
of Anderson Localization, at least in 1D case (see the extended abstracts of talks by Jake Fillman, Victor
Kleptsyn, Tom VandenBoom, and Xiaowen Zhu below). New results were obtained in higher dimensional
case as well, see the extended abstract of Charles Smart below.

The workshop was organized to bring together people who contributed to the recent progress in the field,
as well as both experts and graduate students specializing in the areas that are directly related to random
matrix products and/or Anderson Localization.

The report consists of two sections. In the first one we collected some of the open problems that were
presented at the problem sessions that were organized during the workshop. Also, the participants were
requested to provide the extended abstracts of the talks, that would contain the formal statements of the main
results that were presented, and would be useful as an ”entry point” to the subject. The second one consists
of the extended abstracts that were provided by the participants.

1 Open Problems
Here we provide the list of open problems that were presented during the problem sessions organized at the
workshop. The participants were encouraged to share open problems related to the topic of the workshop
that they are familiar with and find interesting, even if a problem is well known to the community and was
initially formulated long time ago.

Problems presented by Jake Fillman (Texas State University)
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Given an irrational α ∈ R, the skew-shift is a dynamical system that takes place on the 2-torus T2 :=
R2/Z2. The dynamics are given by T = Tα:

T (θ1, θ2) := (θ1 + α, θ1 + θ2), (θ1, θ2) ∈ T2.

For each θ = (θ1, θ2) ∈ T2, one defines a potential Vθ ∈ `∞(Z) via

Vθ(n) = 2 cos(2π(P2(Tnθ))), n ∈ Z,

where P2(θ1, θ2) = θ2. Then, for each θ ∈ T2, and λ ∈ R, one has a Schrödinger operator Hθ,λ given by

[Hθ,λψ](n) = ψ(n− 1) + λVθ(n)ψ(n) + ψn+1.

By standard arguments, there is a fixed set Σλ such that Σλ = σ(Hθ,λ) for all θ ∈ T2. We proposed the
following open problems:

1. Prove or disprove that Σλ is an interval or has at most finitely many gaps for all λ > 0.

2. Prove or disprove that the Lyapunov exponent of Hθ,λ is positive for all λ 6= 0.

3. Prove or disprove that the family {Hθ,λ}θ∈T2 enjoys Anderson localization for any λ 6= 0.

We note that Problem 2 is easily solved for |λ| > 1 by Herman’s estimate; the open problem is then for
λ ∈ [−1, 1] \ {0}.

Problems presented by Anton Gorodetski (University of California, Irvine)

One of the most basic results in the theory of the 1D ergodic Schrödinger operators is the theorem by
Pastur that claims that the spectrum is a compact set that is the same for almost every initial condition (i.e.
for almost all phases). In particular, in the case of a potential given by iid random variables, it is known that
the almost sure spectrum is a finite union of intervals. The statement certainly cannot hold in general in the
non-stationary setting, i.e. for a potential given by independent but not identically distributed variables. At
the same time, due to Kolmogorov zero-one law, the almost sure essential spectrum is well defined in this
case. Is it possible to give a description of the essential spectrum (as a set) in this case? It is known that
the essential spectrum does not have to be a finite union of intervals, see the extended abstract of the talk by
A.Gorodetski below. Is it true that in the case of the potential given by independent random variables with
variation uniformly bounded away from zero the essential spectrum must contain an interval?

An attempt to construct a counterexample that would answer the latter question we were trying to con-
sider a potential given by V1(n) + V2(n), where {V1(n)} is a Fibonacci potential with large coupling, and
{V2(n)} is an Anderson-Bernoulli potential. What is the spectrum (as a set) of the corresponding Schrödinger
operator? Is it a Cantor set? Cantorval? Does it contain an interval?

Problems presented by Nishant Rangamani (University of California, Irvine)

We begin with the set-up of the problem. Let I be a compact interval and suppose for each E ∈ I
we have a family of independent and identically distributed random matrices (i.i.d.) Y E1 , . . . , Y En , . . . in
SL2(R). Suppose further that the smallest closed subgroup generated by the matrices is strongly irreducible
and contracting and E[log+ ||Y Ei ||] < ∞. Under these conditions, Kingman’s subadditive ergodic theorem
together with Furstenberg’s theorem imply that the Lyapunov exponent which can be defined (for fixed E) as

lim
n→∞

1

n
log ||Y En · · ·Y E1 || exists almost surely and is strictly positive.

The next development along these lines revolved around obtaining further analogs of results for i.i.d. real
random variables (e.g. central limit theorem, large deviations, etc.). These developments built around the
work of Furstenberg and was carried out by Guivarc’h, Goldsheid, Le Page, and Raugi (among many other
authors as well).

In particular, in 1982, Le Page proved analogs of both central limit theorem and large deviation theorems
for products of i.i.d. matrices (under appropriate moment condition and a condition on the smallest closed
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subgroup of SL2(R) generated by the matrices - strong irreducibility and contracting). These results were
later extended to the matrix elements of such products by Tsay. However, these results are all obtained under
a moment condition. In particular, it is required that E[exp(log+ ||M ||)] < ∞. This is known as having
a finite exponential moment. We note that this material and additional background is well covered in the
monograph by Bougerol and Lacroix1.

Thus, it is natural to ask what happens in the absence of such a moment condition.
In particular, can estimates be made as to the speed of the convergence of the products (and their matrix

elements) when there is no exponential moment? Towards this end, there has been recent work by Cagri Sert2

which identifies a convex rate function (under no moment condition) through which a weak large deviation
principle can be stated. However, the specifics of the rate function can only be identified in the regime of an
exponential moment and it remains desirable to obtain results which link the strength of the moment to the
rate at which the random products deviate from their mean.

We state Tsay’s theorem for large deviations of the matrix elements below in order to illustrate what types
of estimates are available with an exponential moment. We note that it is likely that the rate at which the
matrix elements converge to the mean reflects the strength of the moment and in the absence of an exponential
moment, one should in turn expect slower convergence to 1 in the probabilities below.

Theorem.3 Suppose I is a compact interval and for each E ∈ I , Y E1 , . . . , Y En , . . . are i.i.d. random
matrices such that the smallest closed subgroup of SL2(R) generated by the matrices is strongly irreducible
and contracting. In addition, suppose E[exp(log+ ||Y E1 ||)] <∞. Then, for any ε > 0, there is an η > 0 and
an N such that for any E ∈ I , any unit vectors u, v, and n > N ,

P[e(γ(E)−ε)n ≤ |〈Y En · · ·Y E1 u, v〉| ≤ e(γ(E)+ε)n] ≥ 1− e−ηn. (1)

Problems presented by Xiaowen Zhu (University of California, Irvine)

Open problem: Prove strong dynamical localization w.r.t. uniform distance in multi-particle model.

The multi-particle model can be defined as follows:

Let Hω : l2(Znd)→ l2(Znd), where n is the number of the particles and d is the dimension of the space.
Let x = (x1, x2, · · · , xn) ∈ Znd where each xi ∈ Zd will denote the position of the i-th particle. For future
convenience, denote xi = (x1

i , · · · , xdi ), where xji ∈ Z.
Let Vω(xi) = ωxi be i.i.d random variables with single-site distribution µ supported on R that is bounded
and non-trivial (supported on more than one point).
Define

(Hωψ)(x) = (4ndψ)(x) +
∑
i

Vω(xi) +
∑

1≤i<j≤n

U(xi − xj),

where 4nd is discrete Laplacian on l2(Znd), U : l2(Zd) → l2(Zd) is the short-range interaction, so we
require U(x) = U(−x) and U(x) = 0 if |x| > r for some constant r > 0.

In order to introduce that, we need definition of two different distance for x, y ∈ Znd, that is the uniform
distance ||x− y||∞ and Hausdorff distance dH(x, y):

||x− y||∞ = max
i

max
j
|xji − y

j
i |

dH(x, y) = max{max
i

min
k
||xi − yk||,max

i
min
k
||yi − xk||}

where ||xi − yk|| = max1≤j≤n |xji − y
j
k|.

Note that dH(x, y) ≤ ||x − y||∞. And with this notation, dH(x, y) < L if and only if ∀xi, ∃yk such that
1P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrodinger operators, Progress in Probability and

Statistics Vol. 8, Birkhause, Boston, 1985.
2C. Sert, Large deviation principle for random matrix products, ArXiv e-prints, (2018).
3J. Tsay, et. al, Some uniform estimates and products of random matrices, Taiwanese Journal of Mathematics, 3(3), (1999), 291–302.



4

||xi − yk|| < L, and ∀yi, ∃xk such that ||yi − xk|| < L.

What we know about this model is Anderson localization and strong dynamical localization w.r.t. Haus-
dorff distance, i.e.

E(sup
t∈R
| < δx, e

−itHωδy > |) ≤ e−CdH(x,y)

What is unknown is strong dynamical localization w.r.t. infinity distance, i.e.

E(sup
t∈R
| < δx, e

−itHωδy > |) ≤ e−C||x−y||∞

This problem is interesting because of the physics interpretation: We know in the random system in Zd,
if there are only one particle in low energy, the probability that it escapes to some point far away decay
exponentially by the strong dynamical localization. Now consider n particles, if one starts with the intial state
where all n particals are gathered at the same position, say 0, and wondered what’s the probability of one
of them escaping to some point far away, according to strong dynamical localization w.r.t. uniform distance,
you get no information since the Hausdorf distance of this two states of positions are 0. But since even for
just one particle, the probability of escape is exponentially small, it makes sense to guess that in this case,
the probability of escape is exponentially small, which will be implied by strong dynamical localization w.r.t.
uniform distance. One could also think about the case you start with all particles gathered together and all
except one has escaped to some where far away, which should be even smaller. This can’t be recognized
through dynamical localization w.r.t. Hausdorff distance as well.

2 Presentation Highlights
Here we provide the extended abstracts of the talks that were given by the participants of the workshop.

Random matrix products and random dynamical systems
by Peter Baxendale (University of Southern California)

This tutorial and historical survey was in two parts. The first part considered the connection between ran-
dom matrix products and random dynamical systems. The random matrices are assumed to form a stationary
sequence of d × d matrices; the restriction to SL(d,R) is unnecessary and is not applicable to dissipative
stochastic systems. The concept of multiplication of random matrices extends to composition of random map-
pings, and hence to random dynamical systems. An important concept is that of the associated skew-product
flow. It is in this setting that the multiplicative ergodic theorem (giving rise to the Lyapunov spectrum) and
the associated local stable manifold theorem (justifying the use of the linearized system to approximate the
underlying non-linear system) can be applied. See [1, 4].

The second part showed how some of these ideas can be used in the analysis of a stochastic bifurca-
tion scenario for a damped and random excited non-linear harmonic oscillator. The linearized system is a
2-dimensional linear stochastic differential equation with top Lyapunov exponent λ = λ(β, σ) depending on
the coefficient of linear dissipation β and the noise intensity σ. The calculation of λ using the Fursteberg-
Khas’minskii formula will be discussed. When λ < 0 it is shown that both the linearization and the un-
derlying non-linear system are almost-surely stable. However when λ > 0 the non-linear effects become
significant, and the behavior of the non-linear system for small positive λ will be determined using informa-
tion from the moment Lyapunov function. The scenario when the parameters (β, σ) are varied in such a way
that λ passes through 0 is a stochastic version of the deterministic Hopf bifurcation. See [2, 3].
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Random perturbations of hyperbolic dynamics
by Florian Dorsch (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany)

We consider a random dynamical system on an L-dimensional sphere SL, L ≥ 2, given by

vn = Tn · vn−1 , n ∈ N , (2)

where the action · : GL(L + 1,R)× SL → SL of the general linear group is

T · v = T v‖T v‖−1 , (3)

and the random matrices Tn are of the form

Tn = R (1 + λrnUn) , n ∈ N . (4)

Here, the matrixR is supposed to be deterministic and hyperbolic, i.e., it is of the form

R = diag(κL+1, . . . , κ1) , κ1 ≥ · · · ≥ κL+1 > 0 (5)

and {rn}n∈N and {Un}n∈N are assumed to be sequences of independent and identically distributed random
variables taking on values in [0, 1] and O(L+ 1), respectively. Moreover, we assume that rn 6≡ 0 and that the
Un are distributed according to the Haar measure on O(L + 1).

Each vector v = (v1, . . . , vL+1)ᵀ ∈ RL+1 is split into its upper part a(v) ∈ RLa , middle part b(v) ∈ RLb

and lower part c(v) ∈ RLc via

a(v) = (v1, . . . , vLa
)ᵀ , b(v) = (vLa+1, . . . , vLa+Lb

)ᵀ , c(v) = (vLa+Lb+1, . . . , vL+1)ᵀ ,

where (La, Lb, Lc) ∈ N × N × N are such that La + Lb + Lc = L + 1. Associated to that partition, let us
introduce the macroscopic gap γ = γ (R, Lb, Lc) between the upper and lower parts by

γ = min

{
1 ,

κ2
Lc

κ2
Lb+Lc+1

− 1

}
∈ [0, 1] .

If the macroscopic gap γ is positive, the entries of the upper part a can be seen as the repulsive entries of the
hyperbolic action. Therefore, the deviation of the random path {vn}n∈N from the attractive part of the phase
space can be measured as the norm of the upper part ‖a(vn)‖. The main result provides a quantitative bound
on the expectation value of ‖a(vN )‖2 for sufficiently large N .

Theorem [1]. Suppose that (La, Lb) 6= (1, 1) and γ > 0. Then, for all 0 < λ ≤ 1
4 there exist N0 =

N0(L, Lc, λ) ∈ N such that

E ‖a(vN )‖2 ≤ 2

(
L + 1

La + Lb

) La+Lb−2

Lc+2
(

6

γ

La
Lc
λ2

) Lc
2+Lc

(6)

for all N ≥ N0 and v0 ∈ SL.
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Sufficient criteria for the application of Fürstenberg’s theorem
by Jake Fillman (Texas State University)

The talk describes simple sufficient criteria that enable one to apply the classical theorem of H. Fürstenberg
on products of random matrices to deduce positive Lyapunov exponents. To begin, let us recall a few rele-
vant definitions. A subgroup G ⊆ SL(2,R) is called strongly irreducible if there does not exist a finite set
∅ 6= Λ ⊆ RP1 such that gΛ = Λ for every g ∈ G. We call G a type-F subgroup if G is closed, non-compact,
and strongly irreducible.

Given a Borel probability measure ν supported in SL(2,R), consider a sequenceA1, A2, . . . of iid random
variables with common distribution ν. One is interested in the Lyapunov exponent:

L(ν) = lim
n→∞

1

n

∫
SL(2,R)n

log ‖AnAn−1 · · ·A1‖ dνn.

In essentially all proofs of localization in the 1D Anderson model, positivity of the Lyapunov exponent sup-
plies the key input to begin a localization proof, although there are notable exceptions, (e.g. [9, 10]). Classi-
cally, one used multi-scale analysis to prove localization [3], but there have been several modern approaches
using one-dimensional tools (hence yielding simpler proofs) [1, 7, 8].

Theorem 1 (Fürstenberg [6]). Let ν be a probability measure supported in SL(2,R) with E(log ‖g‖) < ∞
and let Gν denote the smallest closed subgroup of SL(2,R) containing suppν. If Gν is a type-F subgroup of
SL(2,R), then L(ν) > 0.

The main theorem of [2] gives simple criteria to check whether one may apply Theorem 1 for analytic
one-paramter families.

Theorem 2 (Bucaj, Damanik, F., Gerbuz, VandenBoom, Wang, Zhang [2]). Let A,B : C → SL(2,C) be
entire functions such that:

(i) If z ∈ R, then A(z), B(z) ∈ SL(2,R),

(ii) TrA(z) and TrB(z) are non-constant,

(iii) if TrA(z) ∈ [−2, 2] or TrB(z) ∈ [−2, 2], then z ∈ R, and

(iv) [A(z), B(z)] := A(z)B(z)−B(z)A(z) 6= 0 for at least one z ∈ C.

Then, there is a discrete set D ⊆ R with the property that the closed subgroup generated by A(x) and B(x)
is a type-F subgroup of SL(2,R) for any x ∈ R \D.

The key observation is that one can encode the failure of the hypotheses of Fürstenberg’s theorem by the
vanishing of analytic quantities. Namely, if TrA, TrB, and det[A,B] are all nonzero, then one can show
that the closed group generated by A and B is of type F.

Critically, hypotheses (i)–(iii) are automatically satisfied in essentially any model based on Schrödinger
operators, leaving (iv) as the relevant “nontriviality condition”. One can use Theorem 2 to easily verify posi-
tivity of the Lyapunov exponent in several models, such as the continuum Anderson model [2], Schrödinger
operators arising from a decomposition of radial metric tree graphs [4], and 1D Schrödinger operators with
random point interactions [5]. [Joint work with V. Bucaj, D. Damanik, V. Gerbuz, T. VandenBoom, F. Wang,
Z. Zhang]
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Exponential growth of products of non-stationary Markov-dependent matricest
by Ilya Goldsheid (Queen Mary, University of London)

1. Introduction

Let (gn)n≥1 be a sequence of matrices, gn ∈ SL(m,R) and set

Sn = gn...g1 (7)

In the seminal 1963 paper [2], H. Furstenberg proved, among others, the following fact.

Theorem 1. Suppose that:
(a) (gn)n≥1 is a sequence of independent identically distributed (i.i.d.) random matrices with distribution

µ.
(b) The group Ḡµ generated by the support of µ does not preserve any probability measure on the unit

sphere in Rm. (The relevant definitions can be found below.)
Then the following limit (called the top Lyapunov exponent of the product Sn) exists with probability 1

and is strictly positive:

lim
n→∞

1

n
ln ‖Sn‖ = γ > 0. (8)
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In 1980 A. Virtser [5] extended this result result to the case of stationary Markov chains.
The purpose of this work is to establish sufficient conditions for exponential growth of products of

Markov-dependent matrices in the case when the underlying Markov chain is non-stationary.
Remark. In fact, Furstenberg proved, under the additional condition of strong irreducibility of Ḡµ,

that for any unit vector x a.s. limn→∞
1
n ln ‖Snx‖ = γ. We don’t discuss this aspect of Furstenberg’s result

here.
Products of independent non-identically distributed matrices were considered in the past. Here are some

references.
Paper [1] by Delyon-Simon-Souillard deals with matrices arising in the theory of localization for Ander-

son model in dimension one with a potential decaying at infinity. These matrices are of the form

gn =

(
λanqn −1

1 0

)
, (9)

where qn are i.i.d. random variables, λ > 0 is a constant, and an satisfy C1|n|−α < |an| < C2|n|−α for
some positive constants C1, C2, α (n 6= 0). The technique of [1] depends heavily on qn being i.i.d. with a
‘good’ probability density function.

An earlier paper [3] by Simon, even though it does not explicitly consider products of matrices, easily
implies interesting estimates for the speed of growth for products of matrices (9) with α = 1

2 − ε (ε > 0).
The independence of qn’s and the existence of their densities are extensively used in the proofs in this paper
while the fact that the densities are the same is not that important (see remarks in [3, page 254]).

Finally, the results of papers by Shubin-Vakilian-Wolff [4], Wolff-Shubin [6], and Wolff [7] are perhaps
most closely related to the results of this work. Paper [4] provides constructive estimates for the norm of an
operator which is the average of a certain representation of SL(2,R), where the average is computed over
the distribution of the matrices. In tern, this result implies a constructive estimate for the rate of growth of
products of matrices (9) with λ = 1, an = 1 and the distribution of qn’s being non-trivial (not concentrated
at one point). We note that the exponential growth of such products follows from Furstenberg’s theorem.
However, the constructive estimates established in [4] imply more than that. Namely, they imply, under
natural conditions, the exponential growth of the product of independent non-identically distributed matrices.
The situation with the proof of localization is similar: formally speaking, the proof in [4] is given for the case
of i.i.d. potentials; in fact, their proof works also for non-identically distributed potentials (see comments in
[4, page 943]).

It is yet to be established which results from [1] can be extended to the case when the qn’s do not have a
density function by using the estimates from [4].

In summary, the exponential growth of products of m×m matrices which are independent but not neces-
sarily identically distributed can be deduced from the results obtained in [4], [6], and especially [7] (we shall
comment on this statement later).

The non-stationary Markov-dependent sequences of matrices form a new class of matrices for which
exponential growth of their products can be established. They include independent matrices as a particular
case. In the case of independent matrices, our proofs are simpler than those in [7].

2. Statement of the main result

Our setting is as follows.
The Markov chain. Let (X,B) be a measurable set (with B being the sigma-algebra of measurable subsets

of the set X). Consider a Markov chain ξn, n ≥ 1, with phase space X and initial distribution µ1. For any
B ∈ B, set

kn(x,B) = P(ξn+1 ∈ B | ξn = x).

We write kn(x, dy) for the corresponding transition kernel of the chain ξn.
Let µn be the distribution of ξn. As usual, for n ≥ 2 and B ∈ B we have

µn(B) = P(ξn ∈ B) =

∫
X

µn−1(dx)kn(x,B).
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We thus have a sequence of ‘Markov related’ measure spaces (X,B, µn). Denote Hn the Hilbert space of
µn-square integrable complex valued functions,

Hn = {f : f : X 7→ C,
∫
X

|f(x)|2µn(dx) <∞}

with the standard inner product: if f, h ∈ Hn then

< f, h >Hn=

∫
X

f(x)h̄(x)µn(dx).

Set
H(0)
n = {f ∈ Hn :

∫
X

f(x)µn(dx) = 0}.

The integral with respect µn will be denote En : En(f) ≡
∫
X
f(x)µn(dx)

Let Kn : Hn+1 7→ Hn be the operator defined by

(Knf)(x) =

∫
X

kn(x, dy)f(y).

Note that the operator Kn ‘computes’ the conditional expectation of f(ξn+1) conditioned on ξn = x and it
is easy to see that if f ∈ Hn+1 then Knf ∈ Hn.

Denote K0
n the restriction of Kn to H0

n+1. Note that if En+1(f) = 0 then En(Knf) = 0, that is
K0
n : H0

n+1 7→ H0
n.

The matrices. Let g : X 7→ SL(m,R) be a matrix-valued B-measurable function on X . Define a
sequence of random matrices gj by setting gj = g(ξj), j ≥ 1. Let νj be the distribution of gj , that is for a
Borel subset Γ, Γ ⊂ SL(m,R), we set

νj(Γ) = P(g(ξj) ∈ Γ).

By supp(νj) ⊂ SL(m,R) we denote the support of νj .
For a distribution ν on SL(m,R) we define a group Gν as follows:

Gν = closed group generated by the set {gḡ−1 : g, ḡ ∈ supp(ν)}. (10)

By S we denote the unit sphere in Rm.
Definition. For g ∈ SL(m,R) and u ∈ S we define g.u = gu/||gu||. The induced action of g the set of

probability measures on S is defined by gκ(B) = κ(g.−1B), where κ is a probability measure on S and B is
a Borel subset of S. We say that a probability measure κ on S is preserved by g if κ(B) = (gκ)(B) for any
Borel B. A group G preserves the measure κ on S if every g ∈ G preserves κ.

We suppose that the Markov chain ξ and the function g satisfy the following assumptions:
I. For some c, 0 ≤ c < 1, for all n ≥ 1

‖K0
n‖ ≤ c.

II. There is a set M of probability measures on SL(m,R) which is compact with respect to weak conver-
gence and such that:

(a) all νn belong to M ,
(b) for any measure ν ∈M the group Gν does not preserve any probability measure on S.
We are now in a position to state our main result:

Theorem 2. Suppose that assumptions I, II are satisfied. Then there is a λ > 0 such that with probability 1

lim inf
n→∞

1

n
ln ‖gn . . . g1‖ ≥ λ. (11)
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Remark. With a slight abuse of notation, we use ‖·‖ to denote the norm of matrices, functions, and operators.
This makes many formulae look less cumbersome while their meaning is always obvious from the context.

3. The idea of the proof explained in a simplified setting

Suppose that matrices gn, n ≥ 1 are independent, µn is the distribution of gn, µn ∈ M . In this setting,
X = S and therefore µn = νn. Our probability space is

(
SN,

∏∞
j=1 µj

)
, where

∏∞
j=1 µj = µ1 × µ2 × .....

The abbreviation a.s. means almost surely with respect to this product measure.
As before, we suppose that M is a compact set of probability measures on SL(m,R) and that for any

µ ∈M the group Gµ does not preserve any probability measure on the unit sphere S.
In this simplified setting, we prove Theorem 1 in three steps.
Step 1. Note that in order to prove (11) it suffices to show that there is a c > 0 such that

E(‖Sn‖−
m
2 ) ≤ e−cn. (12)

Indeed, by the Markov inequality for any ε > 0

P(‖Sn‖ ≤ eεn) = P(‖Sn‖−
m
2 ≥ e−m2 εn) ≤ eεm2 nE(‖Sn‖−

m
2 ) ≤ e(εm2 −c)n.

If ε < 2c/m the the Borel-Cantelli lemma implies that the set {n : ‖Sn‖ ≤ eεn} is a.s. finite. This means
that (11) holds a.s. for any γ < 2c/m.

Step 2. Let L2(S, dx) be the Hilbert space of complex valued functions on S equipped with the Lebesgue
measure dx which is normalized to 1. The inner product of f, h ∈ L2(S, dx) is given by

< f, h >=

∫
S
f(x)h̄(x)dx.

Let V be the set of unitary operators in L2(S). Consider a unitary ‘representation’ ρ : SL(m,R) 7→ V: the
unitary operator ρ(g) ≡ Vg acts on f ∈ L2(S) as follows:

Vgf(x) = f(g.x)||gx||−m2 . (13)

It is easy to verify that
||f || = ||Vgf || and that Vg1g2 = Vg2Vg1 . (14)

For µ ∈M , put

Wµ =

∫
SL(m,R)

Vgdµ(g).

Theorem 3. If no probability measure on S is preserved by Gµ then ||Wµ|| < 1.

Idea of the proof. We shall show that if ||Wµ|| = 1, then there is a probability measure on S which is
preserved by Gµ.

The idea of the proof becomes particularly transparent if there is a function f ∈ L2(S, dx) with ||f || = 1
and such that ||Wµf || = 1. So, let this be the case. Define fg = Vgf and ϕ = Wµf =

∫
SL(m,R)

fgdµ(g).
Then

1 = ||Wµf || =

∣∣∣∣∣
∣∣∣∣∣
∫
SL(m,R)

fgdµ(g)

∣∣∣∣∣
∣∣∣∣∣ ≤

∫
SL(m,R)

||fg||dµ(g) = 1

and hence ∣∣∣∣∣
∣∣∣∣∣
∫
SL(m,R)

fgdµ(g)

∣∣∣∣∣
∣∣∣∣∣ = 1.

Since the spaceL2(S, dx) is uniformly convex, this equality takes place if and only if fg = const for µ-almost
all g ∈ SL(m,R). For instance, if we put

ϕ(x) = Wµf(x) =

∫
SL(m,R)

fg(x)dµ(g) (15)
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then for µ-almost all g ∈ SL(m,R) and almost all x ∈ S

ϕ(x) = fg(x). (16)

Equality (16) implies equality of measures with densities |ϕ(x)|2 and |f(g.x)|2||gx||−m respectively:∫
S
ψ(x)|ϕ(x)|2dx =

∫
S
ψ(x)|f(g.x)|2||gx||−mdx, (17)

where ψ is any continuous function on S. But then ϕ = fg for µ-almost all g (where once again the equality
means the that the corresponding measures are equal). Since for any probability measure κ the measure gκ is
weakly continuous in g, we have that fg1 = fg2 for any g1 and g2 from the support of µ and hence fg2g−1

1
= f ,

which means that a measure with the density |f |2 is preserved by any g2g
−1
1 with g1, g2 ∈ suppµ.

If ‖Wµf‖ < 1 for every f ∈ L2(S, dx) but ‖Wµ‖ = 1 then there is a sequence of functions fn ∈
L2(S, dx) with ‖fn‖ = 1 and such that limn→∞ ‖Wµfn‖ = 1. We shall view the functions |fn|2 as
densities of measures κn on S, dκn(x) = |fn(x)|2dx. Since S is a compact set, any such sequence has a
weakly converging subsequence. So, we shall suppose from now on that limn→∞ κn = κ. The equalities
which were used above would now hold only in the limit n → ∞ and one concludes that g1κ = g2κ. This
completes the proof of Theorem 3. �

Step 3. Since ‖Sn‖ ≥ ‖Snx‖, x ∈ S, (12) would follow from∫
S
E(‖Snx‖−

m
2 )dx ≤ e−cn. (18)

Note next that
‖gn...g1x‖−

m
2 = (Vgn...g11)(x) = (Vg1 ...Vgn1)(x),

where 1 is the function on S which takes value 1 at every x ∈ S. Therefore∫
S
E(‖Snx‖−

m
2 )dx = E

(∫
S
‖gn...g1x‖−

m
2 dx

)
= E

(∫
S

(Vg1 ...Vgn1)(x)dx

)
= E (< Vg1 ...Vgn1,1 >) =< E (Vg1 ...Vgn)1,1 > .

Since the operators Vg1 , ..., Vgn are independent we obtain

E (Vg1 ...Vgn) = E (Vg1) ...E (Vgn) = Wµ1
...Wµn

Finally, ∫
S
E(‖Snx‖−

m
2 )dx =< Wµ1

...Wµn1,1 >≤ ‖Wµ1
‖...‖Wµn‖ ≤ e−cn, (19)

where c = infµ∈M (− ln ‖Wµ‖). �

4. Additional comments

1. Theorem 3 is the main ingredient of the above proof. We could, instead of proving it, use a more
general result from [7] (see Theorem 1 in this paper). However, our goal is to prove the exponential growth
and for that we have to control the single concrete mapping (13) from SL(m,R) into the space V which has
properties (14) (and which is not quite a representation - though the difference is trivial). Our reliance on the
general representation theory is almost non-existent and this, together with the simplicity of the above proof
and the fact that it makes this work more self-contained justifies our approach.

2. In the context of products of matrices, operators Wµ were first explicitly defined in [5] where it was
proved that the spectral radius of Wµ is less than 1. In the case of identically distributed independent gn this
fact implies Theorem 2. In fact, [5] starts with a more complicated version of this operator which allows one
to control products of stationary Markov dependent matrices and, once again, the positivity of the Lyapounov
exponent follows from the fact that the corresponding spectral radius is less than 1.
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The full proof of our Theorem 2 requires an approach which makes use of a simplified version of con-
structions introduced and is more geometric than in that in this paper.

3. For matrices gj of the form (9), important constructive estimates of ||WµWµ̃|| were obtained in [4].
They are seem to be optimal in some natural sense.

With a little more work, one could obtain constructive estimates also for ||Wµ||.
4. Furstenberg’s theorem for the i.i.d. case follows from Theorem 2. If the identity matrix I is in the

support suppµ then our Gµ and the Ḡµ from Theorem 1 are the same group. If I 6∈ supp(µ), then we can
apply our theorem to the measure µ̃ = 1

2µ+ 1
2δI . It is easy to see that the Lyapunov exponent for µ̃ is positive

if and only if the Lyapunov exponent for µ is positive. This observation completes the proof of Furstenberg’s
theorem.
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Sums of Cantor sets and non-stationary Anderson-Bernoulli Model
by Anton Gorodetski (University of California, Irvine)

Questions on the structure of Sums of Cantor sets appear naturally in many areas of dynamical sys-
tems, number theory, and spectral theory. One can use the known machinery to give an example of a non-
stationary Anderson-Bernoulli potential such that the almost sure essential spectrum of the corresponding
discrete Schrödinger operator H : l2(Z)→ l2(Z) intersects an open interval at a Cantor set of zero measure.
Construction is very explicit. Namely, choose any sequence {nk}k∈N of integers such that

nk →∞ and nk+1 − nk →∞ as k →∞.

We define the random potential in the following way:

V (n) =

{
0 or 1 with probability 1/2, if n 6∈ {nk};
0 or 100 with probability 1/2, if n ∈ {nk}.

Theorem 1. Almost sure essential spectrum of the operator H with the potential {V (n)} defined above is a
union of the interval [−2, 3] and a Cantor set contained in the interval [98, 102].

To characterize the spectrum of an operator it will be convenient to use the following criterion:
Proposition 1. Let {V (n)}n∈Z be a bounded potential of the discrete Schrödinger operator H acting on
`2(Z) via

[Hu](n) = u(n+ 1) + u(n− 1) + V (n)u(n). (20)



13

Then we have the following:

1) Energy E ∈ R belongs to the spectrum of the operator H if and only if there exists K > 0 such that
for any N ∈ N there is m ∈ Z and a unit vector ū, |ū| = 1, such that |T[m,m+i],E ū| ≤ K for all |i| ≤ N ,
where T[m,m+i],E is the product of transfer matrices given by

T[m,m+i],E =


Πm+i−1,E . . .Πm,E , if i > 0;
Id, if i = 0;
Π−1
m+i,E . . .Π

−1
m−1,E , if i < 0,

and Πn,E =

(
E − V (n) −1

1 0

)
.

2) Energy E ∈ R belongs to the essential spectrum of the operator H if and only if there exists K > 0
such that for any N ∈ N there is a sequence {mj}j∈N,mj ∈ Z, with |mj −mj′ | > 2N if j 6= j′, and unit
vectors ūj , |ūj | = 1, such that |T[mj ,mj+i],E ūj | ≤ K for all |i| ≤ N and all j ∈ N.

For each ω ∈ {0, 1}Z consider an operator Hω : l2(Z)→ l2(Z) given by the potential

Vω(n) =

{
100, if n = 0;
ωn, if n 6= 0.

There are uncountably many operators of this form. Each of them has exactly one eigenvalue in the interval
[98, 102]. Let us denote this eigenvalue by Eω .

Intersection of the almost sure essential spectrum of the operator H given by the potential {V (n)} with
the interval [98, 102] is exactly ∪ω∈{0,1}Z Eω .

Notice that if A > 2, then the matrix of the form
(

A 1
−1 0

)
has two eigenvalues, namely A+

√
A2−4
2 >

1 and A
√
A2−4
2 =

(
A+
√
A2−4
2

)−1

< 1. Let us denote the proectivizations of the corresponding eigenvectors
by x1(A) and x2(A).

For an operator Hω each transfer matrix Πn,E , n 6= 0, must be either
(

E 1
−1 0

)
, or

(
E − 1 1
−1 0

)
,

and we are interested in the regime where E ∈ [98, 102]. Let us denote by I1(E) the interval on S1 between
the points x1(E) and x1(E − 1), and by I2(E) the interval between the points x2(E) and x2(E − 1).
Denote by fn,E the proectivization of the map Πn,E . Then if n 6= 0, we have fn,E(I1(E)) ⊂ I1(E), and
f−1
n,E(I2(E)) ⊂ I2(E). Moreover, fn,E |I1(E) and f−1

n,E |I2(E) are contractions for each n 6= 0. For a given
ω ∈ {0, 1}Z there exists exactly one point zω(E) ∈ I1(E) such that

zω(E) = ∩n∈Nf−n,E ◦ . . . ◦ f−1,E(I1(E)).

Notice that if the vector w̄ ∈ R2, |w̄| = 1, correspond to the direction defined by zω(E), then

(Π−n,E . . .Π−1,E)
−1

(w̄)→ 0 as n→∞,

and for any vector v̄ ∦ w̄ ∣∣∣(Π−n,E . . .Π−1,E)
−1

(v̄)
∣∣∣→∞

exponentially fast as n → ∞. The set K(E) = ∪ω∈{0,1}Zzω(E) is a dynamically defined Cantor set inside
of I1(E). Notice that

∣∣f ′n,E |I1(E)

∣∣ ∼ 1
E2 , and in our regime E ∼ 100. Hence Hausdorff dimension of K(E)

is small, dimH K(E) = dimBK(E)� 1/2.
Similarly, the set

C(E) = ∪ω∈{0,1}Z
(
∩n∈Nf−1

1,E ◦ . . . ◦ f
−1
n,E(I2(E))

)
is a dynamically defined Cantor set, and dimH C(E) = dimB C(E)� 1/2.

A given point E ∈ [98, 102] is an eigenvalue of an operator Hω for some ω ∈ {0, 1}Z if f0,E(K(E)) ∩
C(E) 6= ∅. Now Proposition 1 follows from the following statement:
Lemma 1. Let K(E) and C(E) be two families of dynamically defined Cantor sets on R1, E ∈ [0, 1].
Suppose that the following properties hold:
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1. The Cantor set K(E) is generated by two C1-smooth (both in x ∈ R1 and E ∈ [0, 1]) orientation
preserving contractions f1,E , f2,E : R1 → R1;

2. The Cantor set C(E) is generated by two C1-smooth (both in x ∈ R1 and E ∈ [0, 1]) orientation
preserving contractions g1,E , g2,E : R1 → R1;

3. max(K(0)) < min(C(0)) and min(K(1)) > max(C(1));

4. There exists δ > 0 such that
∂fi,E(x)

∂E
> δ,

∂gi,E(x)

∂E
< −δ

for all E ∈ [0, 1], i = 1, 2, and x ∈ R1;

5. We have
max
E∈[0,1]

dimB C(E) + max
E∈[0,1]

dimBK(E) < 1.

Then
{E ∈ [0, 1] | C(E) ∩K(E) 6= ∅}

is a Cantor set of box counting dimension not greater than(
max
E∈[0,1]

dimB C(E) + max
E∈[0,1]

dimBK(E)

)
.

Notice that the question on the structure of the set of translations of one Cantor set that have non-empty
intersections with another is closely related to the questions about the structure of the difference of two
Cantor sets. Sums (and differences) of dynamically defined Cantor sets were heavily studied, e.g. see [1]
and references therein. But in our case we needed to work with two Cantor sets that depend on a parameter,
so the question about the set of parameters that correspond to a non-empty intersection of the sets cannot be
directly reduced to considering the difference of the Cantor sets, and therefore we need Lemma 1 above.

The reported results were obtained as a joint project with Victor Kleptsyn.
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Random Hamiltonians with Arbitrary Point Interactions: Positivity of the Lyapunov Exponent
by Mark Helman and Jacob Kesten (Rice University)

We consider disordered Hamiltonians with arbitrary point interactions under minimal assumptions on
the randomness. Such operators are realized via self-adjoint vertex conditions imposed on a discrete set of
points in the real line. However, contrary to all previously considered Kronig–Penney type random models,
we make no assumptions on the regularity of the probability distribution of the i.i.d. random variables in
question, which is essential in the study of several random quantum graph models.

In our model, the disordered Hamiltonians are given by the Laplace operator subject to arbitrary random
self-adjoint singular perturbations which are supported on a random discrete subset of the real line. Here,
the underlying one-step transfer matrix takes a much more general form than in the previous studies. In this
setting, we managed to prove the following dichotomy: Either every realization of the random operator has
purely absolutely continuous spectrum or spectral and exponential dynamical localization hold. The core of
such proof of Anderson Localization for those operators is our new result of the positivity of the Lyapunov
exponent for all energies outside of a discrete set.
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In particular, we verify the assumptions of Theorem 2.1 in [1], with the matrices being the one step-

transfer matrices from the above model, which are given byME(`, B) := B

[
cos
√
E` sin

√
E`√
E

−
√
E sin

√
E` cos

√
E`

]
,

where B ∈ SL2(R) and ` ∈ R>0. This verification boiled down to showing that the commutator of 2 such
transfer matrices,ME(`1, B1) andME(`2, B2), is a non-identically zero function of the energy, E, over C,
except for the trivial cases when `1 = `2 and B1 = ±B2, or Bi = ±I2 for i = 1, 2. Then, [1, Theorem 2.1]
gives that the Lyapunov Exponent of the model is positive away from a discrete set of energies E ∈ R, thus
allowing us to conclude that spectral and exponential dynamical localization holds for all but a discrete set of
energies, on which the spectrum of the operator will be purely absolutely continuous.
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Cantor Spectrum for CMV and Jacobi Matrices
with Coefficients arising from Generalized Skew-Shifts

by Hyunkyu Jun (Rice University)

Let X be a compact metric space and let T : X → X be a strictly ergodic homeomorphism, which fibers
over an almost periodic dynamical system (generalized skew-shifts). This means there exists an infinite
compact abelian group G and an onto continuous map h : X → G such that h(T (x)) = h(x) + g for some
g ∈ G. We consider CMV matrices and Jacobi matrices whose Verblunsky coefficients and respectively,
Jacobi coefficients are obtained by a continuous sampling map along an orbit of T.

Our interest is to investigate spectral properties of CMV and Jacobi matrices. Let f ∈ C0(X,D) where
D is the unit disk in the complex plane. Define the bi-infinite Verblansky coefficients {αn}n∈Z as αn :=
f(Tnx) where x ∈ X. Let Cx be the associated bi-infinite CMV matrix. By minimality of T , there exists
Σ ⊂ ∂D such that σ(Cx) = Σ for all x ∈ X . Moreover, in Damanik et al [2], the authors show

∂D \ Σ = {z ∈ ∂D : (T,Af,z) is uniformly hyperbolic}

where

Af,z(x) :=
1

z−1/2
√

1− |f(x)|2

[
z −f̄(x)

−f(x)z 1

]
.

One of our results states:
Theorem 1. For a generic f ∈ C0(X,D), we have that ∂D \ Σ is dense; that is, the associated CMV

operators have a Cantor spectrum.

Here, by saying f is generic, this means f is an element of countable intersection of open dense subsets
of C0(X,D).

For the Jacobi case, define the bi-infinite Jacobi coefficients {an}n∈Z and {bn}n∈Z by an = fa(Tn(x))
and bn = fb(T

nx), respectively. Let Jx be the associated Jacobi matrix. By minimality of T, there exists
Σ′ ⊂ R such that σ(Jx) = Σ′ for all x ∈ X . Moreover, in Marx [3], the author shows

R \ Σ′ = {E ∈ R|(T,AE,fa,fb) is uniformly hyperbolic}

where

AE,fa,fb(x) =
1

fa(x)

[
E − fb(x) −1
fa(x)2 0

]
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The other major result states:
Theorem 2. Let fa ∈ C0(X,R) with fa(x) > 0 for all x ∈ X . For generic fb ∈ C0(X,R), we have that

R \ Σ′ is dense; that is, the associated Jacobi matrices have Cantor spectrum.

Here, by saying fb is generic, this means fb is an element of a countable intersection of open dense subsets
of C0(X,R).

The proofs heavily builds upon the results in Avila et al [1]. Moreover, the proof of Theorem 2 is a direct
application of results in [1]. In Avila et al [1], the authors prove that an SL(2,R)-cocycle with a certain
property can be perturbed so that it is uniformly hyperbolic. This implies that if a cocycle associated to a
CMV matrix, (T,Af,z), is not uniformly hyperbolic, it can be perturbed so that it is a uniformly hyperbolic
SL(2,R)-cocycle. Our proof converts this perturbed SL(2,R)-cocylce to one associated with a CMV matrix
while the uniformly hyperbolicity is preserved.
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Furstenberg theorem: now with a parameter!
by Victor Kleptsyn (CNRS, Institut de Recherche Mathématique de Rennes)

Let (Ω, µ) be a probability space, J ⊂ R be a compact interval of parameters, and F : Ω×J → SL(2,R)
be a bounded measurable (and continuous in second argument) map that to any ω ∈ Ω puts in correspondence
a matrix Fa(ω) that depends continuously on the parameter a ∈ J . One of the main application of our results
is given by products of transfer matrices for 1D Anderson Model, where the role of the parameter is played
by the value of energy E. For a given sequence ω̄ ∈ ΩN, ω̄ = ω1ω2 . . . denote

Tn,a,ω̄ = Fa(ωn)Fa(ωn−1) . . . Fa(ω1).

Furstenberg-Kesten Theorem [1] implies that for each value of the parameter a ∈ J there is a subset Ωa ⊆ ΩN

with µN(Ωa) = 1 such that for any ω̄ ∈ Ωa the limit

λF (a) := lim
n→∞

1

n
log ‖Tn,a,ω̄‖

exists.
Is it possible to choose Ωa uniformly in the parameter? In other words, is it true that µN-almost surely

the limit above exists for all values of the parameter a ∈ J? It turns out that the answer to these questions is
drastically different depending of presence or absence of uniform hyperbolicity.

Definition A collection of SL(2,R) (or SL(k,R)) matrices {Mα}α∈A is called uniformly hyperbolic
if there exists a constant η > 1 such that for any finite sequence of matrices Mα1

,Mα2
, . . . ,Mαn we have

‖Mα1
Mα2

. . .Mαn‖ > ηn.

There is a number of equivalent ways to describe uniform hyperbolicity of SL(2,R) (or SL(k,R)) cocy-
cles, such as an invariant splitting into stable and unstable directions, or the absence of a Sacker-Sell solution.
In particular, existence of invariant one-dimensional stable and unstable directions for uniformly hyperbolic
SL(2,R) cocycles combined with Birkhoff Ergodic Theorem immediately implies the following statement:
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Proposition In the setting above, assume that for each a ∈ J the collection of matrices {Fa(ω)}ω∈Ω is
uniformly hyperbolic. Then, for µN-a.e. ω̄ ∈ ΩN the limit

lim
n→∞

1

n
log ‖Tn,a,ω̄‖ = λF (a) > 0

exists for all a ∈ J .
Remark In the case of SL(k,R), k > 2, even uniform hyperbolicity does not guarantee the convergence

uniformly in parameter, or even pointwise convergence for all parameters. More restrictive assumptions (e.g.
positivity of all entries of the matrices) are needed.

The case of positive Lyapunov exponent in absence of uniform hyperbolicity is usually referred to as
non-uniformly hyperbolic case.

From now on, we will proceed under the following standing assumptions:

(A1) (Furstenberg condition) Denote by µa the measure µa = (Fa)∗(µ). We assume that for each a ∈ J
the measure µa on SL(2,R) satisfies the (individual) Furstenberg non-degeneracy condition, that is,
its support is not contained in any compact subgroup of SL(2,R), and there is no suppµa-invariant
finite union of proper subspaces of R2.

(A2) (C1-boundedness) The maps Fa(ω) are C1-smooth in the parameter a ∈ J , with uniformly bounded
C1-norm, i.e. there exists M > 0 such that for all ω ∈ Ω and all a ∈ J

‖Fa(ω)‖,
∥∥∥∥ ddaFa(ω)

∥∥∥∥ ≤M.

(A3) (Non-uniform hyperbolicity) For each a ∈ J the collection of matrices {Fa(ω)}ω∈Ω is not uniformly
hyperbolic.

(A4) (Monotonicity) There exists δ > 0 such that

d

da
arg(Fa(ω)v̄) > δ > 0

for all a ∈ J, ω ∈ Ω, v̄ ∈ R2\{0}. In other words, as we increase the parameter, the image of any
given vector v̄ spins in the positive direction with a speed that is bounded from below.

Our main result is the following theorem, describing the behaviour of the random parameter-dependent
products of SL(2,R) matrices:

Theorem 1 (Parametric version of Furstenberg Theorem). Under the assumptions (A1) − (A4) above, for
µN-almost every ω̄ ∈ ΩN the following holds:

• (Regular upper limit) For every a ∈ J we have

lim sup
n→∞

1

n
log ‖Tn,a,ω̄‖ = λF (a) > 0.

• (Gδ-vanishing) The set

S0(ω̄) :=

{
a ∈ J | lim inf

n→∞

1

n
log ‖Tn,a,ω̄‖ = 0

}
is a (random) dense Gδ-subset of the interval J .

• (Hausdorff dimension) The (random) set of parameters with exceptional behaviour,

Se(ω̄) :=

{
a ∈ J | lim inf

n→∞

1

n
log ‖Tn,a,ω̄‖ < λF (a)

}
,

has zero Hausdorff dimension:
dimH Se(ω̄) = 0.



18

Notice that in this case existence of a dense subset of energies in the spectrum for which the limit that
defines the Lyapunov exponent does not exist was shown in [2, Theorem 6.2].

Other related results as well as the complete proof of Theorem 1 can be found in [3].
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Non-stationary versions of Anderson Localization
and Furstenberg Theorem on random matrix products

by Victor Kleptsyn (CNRS, Institut de Recherche Mathématique de Rennes)

The asymptotic behavior of sums of i.i.d. random variables is very well studied in the classical probability
theory. Analogous questions on random products of matrix-valued i.i.d. random variables were initially
formulated in the simplest case of 2 × 2 matrices with positive entries by Bellman. Later these questions
attracted lots of attention due to the results by Furstenberg and Kesten [1] who showed that exponential rate
of growth of the norms of the random products (aka Lyapunov exponent) is well defined almost surely, and
Furstenberg [2, 3], where it was shown that under some non-degeneracy conditions Lyapunov exponent must
be positive.

The most famous and classical result is the following Furstenberg Theorem:

Theorem 1. Let {Xk, k ≥ 1} be independent and identically distributed random variables, taking values
in SL(d,R), the d × d matrices with determinant one, let GX be the smallest closed subgroup of SL(d,R)
containing the support of the distribution of X1, and assume that

E[log ‖X1‖] <∞.

Also, assume that GX is not compact, and there exists no GX -invariant finite union of proper subspaces
of Rd. Then there exists a positive constant λF such that with probability one

lim
n→∞

1

n
log ‖Xn . . . X2X1‖ = λF > 0.

In the first part of this paper we generalize Furstenberg Theorem to the case when the random variables
{Xk, k ≥ 1} do not have to be identically distributed. Here is our setting:

Let {να}α∈K , supp να ⊂ SL(d,R), be a collection of compactly supported probability measures, in-
dexed by a parameter α from a compact metric space K. We assume that dependence of να on α is contin-
uous (in weak-* topology). As a partial case, one can consider a finite collection {νi}i=1,...,k of probability
measures on SL(d,R).

For any A ∈ SL(d,R) we will denote by fA : RPd−1 → RPd−1 the induced projective transformation.
We make the following

Standing Assumption: We assume that for any α ∈ K there are no Borel probability measures µ1, µ2

on RPd−1 such that (fA)∗µ1 = µ2 for να-almost every A ∈ SL(d,R).

Let us fix some sequence {αi}i∈N, αi ∈ K, and let Ai ∈ SL(d,R) be chosen randomly with respect to
distribution ναi . Set Tn = AnAn−1 . . . A1, and denote

Ln = E log ‖Tn‖, (21)

where the expectation is taken over the distribution να1 × να2 × . . .× ναn .
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Theorem 2. Under the Standing Assumption above, for any fixed sequence {αi}i∈N ∈ KN we have

lim inf
n→∞

1

n
Ln > 0.

A statement similar to Theorems 2 was previously announced by I. Goldsheid, see the extended abstract
of his talk above.

In the case of SL(2,R) matrices one can actually say much more.

Theorem 3. In the case d = 2 (i.e. in the case of random non-stationary products of SL(2,R) matrices)
almost surely additionally to the statement of Theorem 2 the following hold:

1) limn→∞
1
n (log ‖Tn‖ − Ln) = 0;

2) There exists a unit vector v̄ ∈ R2 such that |Tnv̄| → 0 as n→∞. Moreover,

lim
n→∞

1

n
(log |Tnv̄|+ Ln) = 0

The statement of Theorem 2 and the first part of Theorem 3 in the case of products of i.i.d. random
matrices correspond to the classical Furstenberg Theorem.

We will prove Theorem 3 via Large Deviations Estimates Theorem, that is also of independent interest:

Theorem 4. In the case d = 2, for any ε > 0 there exists δ > 0 such that for all sufficiently large n ∈ N we
have

P {|log ‖Tn‖ − Ln| > εn} < e−δn,

where P = να1
× να2

× . . . × ναn . Moreover, the same estimate holds for the lengths of random images of
any given initial unit vector v0:

∀v0 ∈ R2, |v0| = 1 P {|log ‖Tnv0‖ − Ln| > εn} < e−δn.

The reported results were obtained in collaboration with A. Gorodetski.
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Phase transition of capacity for uniform Gδ sets
by Fernando Quintino (University of California, Irvine)

In a joint work with Victor Kleptsyn, we consider a family of dense Gδ subsets of [0, 1], defined as
intersections of unions of small uniformly distributed intervals, and study their capacity. That is, given a
(sufficiently fast) decreasing sequence rn → 0, for every n we consider a union of n equally spaced intervals
of length rn:

Vn :=

n⋃
j=1

Jk,n, (22)

where Jk,n is an open interval of length rn centered at ck,n = k+(1/2)
n :

Jk,n := (cj,n −
rn
2
, cj,n +

rn
2

), cj,n =
2j + 1

2n
, j = 0, 1, . . . , n− 1. (23)
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Then we define the uniform Gδ-set S, corresponding to the sequence rn, by

S :=

∞⋂
m=1

∞⋃
n=m

Vn; (24)

it is immediate to see that S is indeed a Gδ-subset of [0, 1]. Such an example is interesting for us for two
reasons. First, in [2] we found that by considering different decrease speed for the lengths rn, we observed a
sharp phase transition: while for a fast decrease this set is of zero capacity, for a slower one it turns out to be
of full capacity (that is, equal to the capacity of [0, 1] itself). Given a compactly supported measure µ on C,
one defines its (Coulomb) energy as a double integral:

I(µ) :=

∫∫
− log |z − w| dµ(z)dµ(w). (25)

The logarithmic capacity of a bounded subset X ⊂ C is then defined by minimizing this energy:
Definition. Let P(X) be the space of probability measures, supported on a (bounded) set X ⊂ C. The

logarithmic capacity of this set is

Cap(X) := exp(− inf{I(µ) | µ ∈ P(X)}).

Theorem 1 (Phase transition, V. Kleptsyn, F. Quintino). For rn = e−n
α

,

1. if α > 2, then Cap(S) = 0,

2. if α < 2, then Cap(S) = Cap([0, 1]).

Second, such aGδ set can be considered as a toy model for the set of exceptional energies in the parametric
version of the Furstenberg theorem on random matrix products[1]. A more generalGδ-sets can be constructed
in the following way. Consider the set

S̃ =
⋂
m

⋃
k≥m

Ik,

where Ik are intervals of length r′k. In this general setting a similar pattern seems to be at play.

Theorem 2 (V. Kleptsyn, F. Quintino). If the series
∑
n

1
| log r′n|

converges, then the set S̃ is of zero capacity.
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Exponential Dynamical Localization for Random Word Models
by Nishant Rangamani (University of California, Irvine)

We give a new proof of spectral localization for the one-dimensional Schrodinger operators whose po-
tentials arise by randomly concatenating words from an underlying set. We then show that once one has
the existence of a complete orthonormal basis of eigenfunctions (with probability one), the same estimates
used to prove it naturally lead to a proof of exponential dynamical localization in expectation (EDL) on any
compact interval not containing a finite set of critical energies.
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The random word models we consider are defined on l2(Z) and are given by

Hωψ(n) = ψ(n+ 1) + ψ(n− 1) + Vω(n)ψ(n).

The potential V is a family of random variables defined on a probability space Ω. To construct the
potential V above, we consider words (vectors in Rn with 1 ≤ n ≤ m), . . . ω−1, ω0, ω1, . . ., so that Vω(0)
corresponds to the kth entry in ω0. A precise construction of the probability space Ω and the random variables
Vω(n) is carried out in [1]. In particular, the authors show that there is a finite set D so that the Lyapunov
exponent is positive outside of D.

Motivated by recent proofs of spectral and dynamical localization given for the Anderson model in [2]
and a proof of exponential dynamical localization in expectation given in [3], we demonstrate the application
of these techniques in the random word case to obtain the two theorems listed at the end of this section.

We note that the proofs given in [2] and [3] use positivity and large deviations of the Lyapunov exponent
to replace parts of the multi-scale analysis. The major improvement in this regard (aside from a shortening of
the length and complexity of localization proofs in one-dimension) is that the complement of the event where
the Green’s function decays exponentially can be shown to have exponentially rather than sub-exponentially
small probability. These estimates were implicit in the proofs of spectral and dynamical localization given in
[2] and were made explicit in [3]. The authors in [3] then used these estimates to prove EDL for the Anderson
model and we extend these techniques to the random word case.

There are several issues one encounters when adapting the techniques developed for the Anderson model
in [2] and [3] to the random word case. Firstly, in the Anderson setting, a uniform large deviation estimate is
immediately available using a theorem in [4]. Since random word models exhibit local correlations, there are
additional steps that need to be taken in order to obtain suitable analogs of large deviation estimates used in
[2] and [3]. Secondly, random word models may have a finite set of energies where the Lyapunov exponent
vanishes and this phenomena demands some care in obtaining estimates on the Green’s functions analogous
to those in [2,3].

The aforementioned results are:
Theorem [5] The spectrum ofHω is almost surely pure point with exponentially decaying eigenfunctions.
Theorem [5] There is a finite D ⊂ R such that if I is a compact interval and D ∩ I = ∅, then there are

C > 0 and α > 0 such that E
[
sup
t∈R

∣∣〈δp, PI(Hω)e−itHωδq〉
∣∣] ≤ Ce−α|p−q| for any p, q ∈ Z.

Here PI denotes the spectral projection onto the interval I .
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Unique continuation and localization on the planar lattice
by Charles Smart (University of Chicago)
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Recall that the Anderson–Bernoulli model is a random linear operator on `2(Zd) given by

H = −∆ + βV,

where ∆ is the graph Laplacian, β > 0 is the noise strength, and V : Zd → {0, 1} is a Bernoulli potential.
We discuss the following two results.

Theorem 1 (Ding–Smart). If d = 2, then H almost surely has pure-point spectrum in [0, ε].

Theorem 2 (Li–Zhang). If d = 3, then H almost surely has pure-point spectrum in [0, ε].

These results advance the state of the art by establishing localization for singular noise in dimensions
larger than one. Following the program of Bourgain–Kenig, the key ingredients of these theorems are the
following unique continuation results.

Theorem 3 (Ding–Smart). The following holds for all α > 1 > ε > 0 and sufficiently large L > 0. If d = 2,
|λ̄| < α, and Q = [−L,L]2 ∩ Z2, then

P[E ] ≥ 1− e−L
1/4−ε

where E is the event that
Hψ = λψ in Q and |λ− λ̄| ≤ e−L

1/2+ε

implies
#{x ∈ Q : |ψ(x)| ≥ e−L

1+ε

|ψ(0)|} ≥ L3/2−ε.

Theorem 4 (Li–Zhang). There is a p > 0 such that, for all α > 1 > ε > 0, the following holds for sufficiently
large L > 0. If d = 3, |∆ψ| ≤ α|ψ| holds in Q = [−L,L]3 ∩ Z3, then

#{x ∈ Q : |ψ(x)| ≥ e−L
1+ε

|ψ(0)|} ≥ L3/2+p.

Both of these unique continuation theorems use ideas from recent work of Buhovsky–Logunov–Malinnikova–
Sodin.

Anderson localization for radial trees
by Selim Sukhtaiev (Rice University)

We establish spectral and dynamical localization for several Anderson–Bernoulli models on metric and
discrete radial trees. The localization results are obtained on compact intervals contained in the complement
of discrete sets of exceptional energies. All results are proved under the minimal hypothesis on the type of
disorder: the random variables generating the trees assume at least two distinct values. This level of gener-
ality, in particular, allows us to treat radial trees with disordered geometry as well as Schrödinger operators
with Bernoulli-type singular potentials. Our methods are based on an interplay between graph-theoretical
properties of radial trees and spectral analysis of the associated random differential and difference operators
on the half-line.

More specifically, let us denote the common distribution of single sites random variables by µ and the
continuum Kirchhoff–Laplacian by H . Assume that suppµ is a bounded set containing at least two elements.
Then there exists a discrete set of exceptional energies D such that:

(i) The operatorHω exhibits Anderson localization at all energies outside ofD. That is, almost surely,Hω

has pure point spectrum and any eigenfunction of Hω corresponding to an energy E ∈ R \D enjoys
an exponential decay estimate of the form

|f(x)| ≤ Ce−λ|x|√
wo(|x|)

with C > 0 and λ > 0, where wo(|x|) denotes the number of vertices in the generation of x, i.e.,
wo(|x|) = #{y ∈ V : gen(y) = gen(x)}.
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(ii) For every compact interval I ∈ R \D and every p > 0, there exists a set Ω∗ ⊂ Ω with µ(Ω∗) = 1 such
that for every ω ∈ Ω∗ and every compact set K ⊂ Γbω,`ω one has

sup
t>0

∥∥|X|pχI(Hω)e−itHωχK
∥∥
L2(Γbω,`ω )

<∞,

where χI(Hω) is the spectral projection corresponding to I , and |X|p denotes the operator of multi-
plication by the radial function f(x) := |x|p, x ∈ Γbω,`ω , where |x| denotes the distance from x to the
root o.

This result together with its discrete version is established in [1].

References
[1] D. Damanik, J. Fillman, S. Sukhtaiev, Localization for Anderson models on metric and discrete tree

graphs, to appear in Mathematische Annalen, arXiv:1902.07290 (2019).

Diophantine properties of matrices
by Yuki Takahashi (Tohoku University)

Let d ≥ 2, and let A = {Ai}i∈Λ be a finite collection of GLd(R) matrices. Write Ai = Ai1 · · ·Ain for
i = i1 · · · in. We say that the set A is Diophantine if there exists a constant c > 0 such that for every n ∈ N,
we have

i, j ∈ Λn, Ai 6= Aj =⇒ ‖Ai −Aj‖ > cn.

The set A is strongly Diophantine if there exists c > 0 such that for all n ∈ N,

i, j ∈ Λn, i 6= j =⇒ ‖Ai −Aj‖ > cn.

Clearly, A is strongly Diophantine if and only if it is Diophantine and generates a free semigroup. For any
collection of linearly independent vectors v1, · · · , vd in Rd consider the cone

Σ = Σv1,··· ,vd = {x1v1 + · · ·xdvd : x1, · · · , xd ≥ 0}.

If a matrix A ∈ GLd(R) satisfies
A(Σ \ {0}) ⊂ Σ◦,

we say that Σ is strictly invariant for A. Given a cone Σ = Σv1,··· ,vd , denote by XΣ,m the set of all GLd(R)

m-tuples of matrices for which Σ is strictly invariant. We consider XΣ,m as an open subset of Rd2m.
Let Σ = Σv1,··· ,vd be a cone in Rd and m ≥ 2. Together with B. Solomyak, the author proved the

following in [1]: For a.e. A ∈ XΣ,m, the m-tuple A is strongly Diophantine. In particular, a.e. m-tuple of
positive GLd(R) matrices is strongly Diophantine.
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Localization for the one-dimensional Anderson model via positive Lyapunov exponents
and a Large Deviation Theorem

by Tom VandenBoom (Yale University)
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It is well-known that the one-dimensional Anderson model is almost-surely Anderson localized – that is
to say, the operator

Hω = ∆ + ω

almost surely (in ω = (ωn)n∈Z) has pure point spectrum with exponentially decaying eigenfunctions pro-
vided the terms ωn are sampled i.i.d. and randomly. However, proofs of this fact in one dimension have until
recently (cf. [2, 7, 8]) utilized the sophisticated multi-dimensional machinery of Multi-Scale Analysis (MSA)
to handle highly singular probability distributions [3, 9]. In this talk, we demonstrate a simplified proof of
Lyapunov behavior for all generalized eigenfunctions of an almost-sure Hω [2].

To state our result precisely, we require some notation: let µ̃ be a probability measure with compact real
support A ⊂ R, and denote by (Ω, µ) = (AZ, µ̃Z) the associated probability space on the full shift over A.
Letting ω ∈ Ω and E ∈ C, define the Schrödinger transfer matrix Mn(E,ω) as the unique SL(2,R) matrix
such that u ∈ CZ solves Hωu = Eu if and only if [un un−1]> = Mn(E,ω)[u0 u−1]>. Then the Lyapunov
exponent L(E) = limn→∞

1
n

∫
Ω

log ‖Mn(E,ω)‖dµ(ω) exists and is positive for all E ∈ R by Furstenberg’s
theorem. Our result is that, for µ-almost every ω ∈ Ω, for any generalized eigenvalue E(ω) ofHω , the norms
of the transfer matrices Mn(E(ω), ω) grow at precisely the Lyapunov rate:

lim
n→∞

1

n
log ‖Mn(E(ω), ω)‖ = L(E(ω)).

Our proof can also be extended to prove dynamical localization via the standard SULE techniques [4].
Historically, proofs of Anderson localization in complete generality involved three key ingredients: first,

an initial length-scale estimate coming from positivity of the Lyapunov exponent; second, a Wegner estimate
on the density of states; and finally, the MSA machinery. Our proof has similar first ingredients; namely,
we achieve an initial length-scale estimate using positive Lyapunov exponents from Furstenberg’s Theorem
[5, 6], and then prove a Large Deviation Theorem (LDT) (which serves the same role as the Wegner estimate).
Where our proof differs significantly from previous proofs is in the final step, whereby we eliminate long-
range “double resonances”: distant pairs of intervals supporting simultaneous localization. We eliminate such
pairs using our LDT and independence; this step is the focus of this talk. With the double resonances elimi-
nated, one can apply an Avalanche Principle argument to the transfer matrices to conclude exponential decay
of the generalized eigenfunctions. This strategy, initially observed by Bourgain and Schlag in application to
strongly mixing potentials [1], is very general and applicable to a variety of one-dimensional models.
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A short proof of Anderson localization for the 1-d Anderson model
by Xiaowen Zhu (University of California, Irvine)

The proof of Anderson localization for 1D Anderson model with arbitrary (e.g. Bernoulli) disorder,
originally given by Carmona-Klein-Martinelli in 1987, is based on the Furstenberg theorem and multi-scale
analysis. This topic has received a renewed attention lately, with two recent new proofs, exploiting the one-
dimensional nature of the model. At the same time, in the 90s it was realized that for one-dimensional models
with positive Lyapunov exponents some parts of multi-scale analysis can be replaced by considerations in-
volving subharmonicity and large deviation estimates for the corresponding cocycle, leading to nonperturba-
tive proofs for 1D quasiperiodic models. Here we present a proof along these lines, for the Anderson model.
It is a joint work with S. Jitomirskaya. Our entire proof of spectral localization fits in three pages and we
expect to present almost complete detail during the talk. I will also present my proof of Anderson localization
for the OPUC (Orthogonal polynomial on the unit circle) with any nontrivial i.i.d random Verblunsky coeffi-
cients, in the spirit of the work above. This proof was commissioned by Barry Simon for the new edition of
his OPUC book.


