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1 Overview of the Field
Quantum information science is one of the most active, intellectually stimulating, and technologically promis-
ing areas in science. It offers a unique opportunity to engage in a wide variety of topics, such as the mathe-
matical and logical foundations of quantum theory, the theory of quantum computation and quantum Shannon
theory, and practical applications like quantum cryptography and quantum sensing. Within quantum infor-
mation science, an increasingly important role is played by quantum resource theories (QRTs), a collective
name accounting for the fact that some distinctive features of quantum mechanics, like entanglement and
coherence, are not just qualitative traits of quantum systems, but are tangible resources that can be extracted,
transformed, traded for one another, and transferred from one system to another [1]. It is quite natural to
apply a resource-theoretic outlook to the study of quantum systems since processes like decoherence rapidly
eliminate most quantum behavior of a system. Like an oil digger, one must exert considerable experimental
effort to witness and control the subtle effects of quantum mechanics.

The basic idea of a quantum resource theory is to study quantum information processing under a restricted
set of physical operations. The permissible operations are called “free,” and because they do not encompass
all physical processes that quantum mechanics allows, only certain physically realizable states of a quantum

Figure 1: In a quantum resource theory, the precious commodity is some physical property or phenomenon that emerges
according to the principles of quantum mechanics. The paradigmatic example is quantum entanglement.
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system can be prepared. These accessible states are likewise called “free,” and any state that is not free is
called a resource state. Thus a quantum resource theory identifies every physical process as being either free
or prohibited, and similarly it classifies every quantum state as being either free or a resource.

The most celebrated example of a quantum resource theory is the theory of entanglement. For two or
more quantum systems, entanglement can be characterized as a resource when the allowed dynamics are
local quantum operations and classical communication (LOCC). For example, as depicted in Fig. 2, Alice
and Bob may be working in their own quantum laboratory while being separated from each other by some
large distance. Due to current technological limitations, the only communication channel connecting their
laboratories is classical, such as a telephone. Hence Alice cannot directly send quantum states to Bob and vice
versa, and the free operations in this resource theory consists of LOCC. While the classical communication
channel allows for the preparation of classically correlated states between the two laboratories, not every type
of joint quantum state can be realized for Alice and Bob’s systems using LOCC. A state is said to be entangled,
and therefore a resource, precisely when it cannot be generated using the free operations of LOCC. For
instance, if Alice and Bob each control a single spin-1/2 quantum system, the singlet state

√
1/2(|01〉−|10〉)

cannot be created by LOCC and it is therefore called an entangled state.
Inspired by the success of entanglement theory, researchers have adopted the resource theory framework

within many other areas of quantum information and physics. For example, asymmetry and quantum refer-
ence frames, quantum thermodynamics, quantum coherence and superposition, secret correlations in quantum
and classical systems, non-Gaussianity in bosonic systems, “magic states” in stabilizer quantum computation,
non-Markovianity in multi-part quantum processes, nonlocality, and quantum correlations have all been stud-
ied as resource theories. Even more foundational objects such as contextuality and Bell non-locality have
been envisioned as resources within quantum information theory.

At the same time, operator theory and mathematical statistics represent two very deep, extremely active,
and intimately interconnected areas of mathematics that have provided the formal basis for the development
of statistical mechanics, quantum theory, and quantum field theory. Notions like algebra of observables,
complete positivity, or quantum hypothesis testing have appeared very soon after the inception of quantum
theory and have been used ubiquitously ever since. Developments in quantum physics have often served as
inspiration for new results in operator theory and statistics. These fields have largely benefited from mutual
influences, cross-breeding, and feedbacks.

It has recently been discovered how generalized resource theories carry many similarities with the theory
of statistical comparisons in mathematical statistics. In the latter, the statistician is interested in answering
questions like, Is one statistical test more informative than another one in deciding between alternative hy-
potheses? or Which statistical test, chosen among a set of alternatives, is the most informative one? The theory
of statistical comparison was established in the 1950s by work of Blackwell, Sherman, and Stein (BSS), as a
generalization of the theory of majorization.

The theory of quantum statistical comparison has advanced as an emerging area in quantum statistics,
with important contributions that extends initial quantum generalizations of the classical BSS theory [6] to
the approximate case [29] and the case of infinite dimensional quantum systems [7]. Extremely important
connections with the theory of operator Schur-convexity have also been explored [42]. The program of quan-
tum statistical comparison has become intertwined with the program of characterizing generalized entropy
for quantum systems via the notion of reverse tests [9].

Figure 2: Quantum entanglement is a quantum resource in the “distant-lab” scenario where the free operations are
LOCC.
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Recent work has shown how the theory of statistical comparison can provide a new insight into quantum
resource theories, in particular, quantum nonlocality [10], and quantum thermodynamics and the resource
theories of asymmetry and coherence [2, 3]. Indeed, the only (to date) known complete set of necessary
and sufficient conditions for arbitrary quantum state transformation under thermodynamic processes [4] has
been obtained using the framework of quantum relative majorization [5] and quantum statistical comparison
[6]. This workshop aimed to create new links between operator theory, mathematical statistics, and the
burgeoning field of quantum information science in particular, quantum thermodynamics and generalized
resource theories.

2 Presentation Highlights and Scientific Progress Made
This workshop united over forty international researchers to present their work on QRTs, discuss recent
results, and stimulate new research directions. The results and scientific work covered in the workshop are
summarized in the following.

• General Structures of QRTs
One of the advantages to adopting a resource-theoretic approach to studying some quantum phe-
nomenon is that it allows one to leverage techniques and analytic tools that apply to general QRTs.
Recent work has focused on identifying key structural properties shared by all QRTs that satisfy cer-
tain mild conditions. In this workshop, some general features that emerge when casting QRTs in terms
of von Neumann subalgebras were covered [11]. Complementary findings for the task of one-shot
resource cost and distillation in general QRTs were also discussed [12]. It was further shown how the
resource objects in any QRT with convex structure have an operational interpretation of being advan-
tageous in some channel discrimination task [13].

• Quantum coherence and thermodynamics. The QRT of quantum coherence analyzes the operational
utility of superposition and off-diagonal elements in the density matrix. In this workshop, techniques
for computing the robustness measure of coherence were demonstrated [14]. Recent work on extend-
ing coherence theory to the level of quantum operations and superchannels was also presented [15].
Applications to clock synchronization via coherence distillation were discussed [16]. In the QRT of
thermodynamics, an application to molecular transitions and their thermodynamics costs was described
[17].

• Entanglement and nonlocality Quantum entanglement and nonlocality are two quintessential quan-
tum resources that emerge in multipartite systems. In the workshop, recent efforts to understand the
structure of multipartite entanglement from a QRT perspective were described [18]. Quantum entan-
glement is the key resource in performing quantum teleportation, and new bounds in the asymptotic
cost of port-based teleportation were presented [19]. Entanglement is also used for “embezzling” state
transformations, and a rigorous analysis of quantum embezzlement was conducted within the context
of a QRT [20]. A resource related to entanglement is quantum nonlocality, and its presence is detected
through the violation of a Bell Inequality. Recently, such violations have been shown to certify the type
of quantum state shared between the different parties, and some results in this direction were presented
[21].

• Quantum computation. QRTs for quantum computation attempt to identify the properties of quan-
tum systems that enable them to perform certain computations seemingly faster than the best classical
algorithms. New measures of quantum computational “magic” were discussed as well as new bounds
on magic state convertibility [22, 23]. In addition, an updated analysis of the matchgate quantum
computational model and its classical simulation were presented [24].

• Pairwise conversion of resources. A particular problem arising in all QRTs is to determine when one
pair of resource states (ρ1, σ1) can be transformed into another (ρ2, σ2) using a free operation in the
QRT. An analysis of this problem in general majorization-based QRTs was presented [25, 26]. These
results included the case of converting pairs of states from one to the other, and variations to this central
problem were analyzed both in the one-shot and asymptotic settings [27, 28]. The problem was also
extended to the pairwise convertibility of quantum channels [29].
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• Quantum Shannon Theory Quantum Shannon Theory exemplifies a QRT in that it studies the con-
vertibility between different information-theoretic resources in the presence of restrictions. New tools
in the study of quantum information systems were presented including entropic continuity bounds [30],
improved decoupling techniques [31], and De Finetti Theorems for Quantum Channels [41].

• Quantum channels and superchannels. A dynamical QRT studies properties of quantum channels
and quantum measurements. Work was presented showing how the structure of devices can be inferred
from the study of classical output data [33, 34, 35]. The general theory of quantum superchannels
and quantum combs was surveyed [36]. In addition, a framework for quantifying the resourcefulness
of quantum channels was described in considerable detail [37, 38]. Specific applications discussed
include the Quantum Zeno Effect [39].

3 Open Problems
A highlight of the workshop was the two open problem sessions. All participants were encouraged to pose
an interesting problem to the community related to quantum resource theories. Here we record the open
problems that were presented.

• Parallel versus sequential strategies for quantum channel discrimination - Presenter: Mark Wilde.
Comment: A solution to this problem has recently been given in arXiv:quant-ph/1909.05826 with
an acknowledgement of the workshop.. An experimenter has access to one of two unknown quantum
channels, N1 or N2, that both act on system S. The goal is to identify which of the two channels is
given in the many-copy setting. A parallel discrimination strategy involves applying n copies of the
channel to an entangled state ρRS

n

and them performing a joint measurement on the outcome state
id⊗n ⊗N⊗ni (ρRS

n

). Based on the measurement outcome, a guess is made to the channel’s identity i.
In the language of hypothesis testing, it is known that the optimal rate for the type-two error exponent
is given by a regularized channel relative entropy [40]: D∞(N1‖N2) = limn→∞

1
nD(N⊗n1 ‖N⊗n2 ),

where
D(N1‖N2) = sup

ψRS
D(idR ⊗N1(ψRS)‖idR ⊗N2(ψRS)).

In contrast, a sequential discrimination strategy does not involve using all n channels at once; rather,
the output of the jth channel can be used in the jth + 1 input. In the sequential setting, the optimal
discrimination rate is given by the amortized relative entropy [41]:

DA(N1‖N2) = sup
ρRS ,σRS

D(idR ⊗N1(ρRS)‖idR ⊗N2(σRS))−D(ρRS‖σRS).

In general the adaptive strategy is no worse that the parallel strategy, in the sense that

D∞(N1‖N2) ≤ DA(N2‖N2). (1)

For classical channels and quantum-classical channels it is known that this inequality is tight. The open
problem is to determine whether there exists quantum channels in which this is a strict inequality, that
is, whether adaptive discrimination can be strictly more powerful than parallel discrimination.

• Second-order asymptotics in pairwise state convertibility - Presenter: Marco Tomamichel. Given
two pairs of quantum states (ρ1, σ1) and (ρ2, σ2), a general problem is to decide whether there exists a
quantum channel E such that E(σ1) = σ2 and E(ρ1) ≈ε ρ2. Such a transformation can be denoted as

(ρ1, σ1)→ε (ρ2, σ2),

this question arises in QRTs defined by some fixed point constraint on the allowed maps E(σ1) = σ1,
such as Gibbs-preserving maps in thermodynamics. In the special case of ε = 0, the solution is known
[42, 5]. The asymptotic version of this problem considers the largest rateR such that for all ε > 0 there
exists a sufficiently large n such that

(ρ⊗n1 , σ⊗n1 )→ε (ρ⊗Rn2 , σ⊗Rn2 ).



5

It is known that the optimal R∞ is given by [28, 43]

R∞ =
D(ρ1‖σ1)

D(ρ2‖σ2)
. (2)

However, the second-order terms in the rate are not known, and the open problem is to characterize,
for a given n and ε, the exact achievable values Rn,ε such that (ρ⊗n1 , σ⊗n1 )→ε (ρ

⊗Rn,εn
2 , σ

⊗Rn,εn
2 ).

• Sequential channel simulation - Presenter: Andreas Winter. The Reverse Shannon Theorem ad-
dresses the problem of simulating a given quantum channelN using one-way classical communication
channels plus local operations with unlimited shared entanglement (LOSE) [44, 45]. In terms of re-
source transformation, this can be expressed as

lR · [c→ c] + (LOSE)→ N⊗l,

which says that lR bits of classical communication with LOSE can simulate l copies of N . In this
setting, LOSE represents the free operations in the QRT, and the goal is to find the minimal rate R
for which this transformation is possible. Notice that this describes a parallel simulation of N in
the sense that N⊗l is an object that acts on l input spaces all at once. A more general simulation
involves reproducing l uses of N that may be applied in a sequential manner. Figure 3 provides an
example of three sequential uses of N . The goal is to simulate such a dynamical resource using

Figure 3: Three sequential uses of N .

classical communication and LOSE, and the sequential simulation cost is the smallest rate of classical
communication needed to faithfully simulate n sequential uses ofN , as n→∞. The open question is
whether there exists channels in which the sequential simulation cost is strictly larger than the parallel
simulation cost.

• Catalytic entropy conjecture - Presenter: Paul Boes. The catalytic entropy conjecture proposes nec-
essary and sufficient conditions for the catalytic convertibility of one state ρS1 into another ρS2 by unitary
evolution. Namely, it says that when the spectrum of ρ1 and ρ2 are inequivalent, there exists a catalytic
state σC and joint unitary USC such that

TrC
[
U(ρS1 ⊗ σC)U†

]
= ρ2 and TrS

[
U(ρS1 ⊗ σC)U†

]
= σ (3)

if and only if S(ρ1) > S(ρ2) and rk(ρ1) ≥ rk(ρ2). Eq. (3) characterizes the catalytic convertibility
of ρ into ρ′, and such a problem appears naturally in the QRTs of thermodynamics and entanglement
[46]. The conjecture here is that the von Neumann entropy is unique measure for deciding catalytic
convertibility. If true, it would provide an operational interpretation of the von Neumann entropy in the
single-shot setting, in contrast to standard i.i.d. interpretations of the von Neumann entropy. The open
problem is to prove or disprove the catalytic convertibility conjecture, and recent work in this direction
can be found in Refs. [46, 47], as well as a formal statement of the problem at [48].

• Realization of Completely PPT-Preserving Superchannels - Presenter: Gilad Gour. A bipartite
quantum channel NA0B0→A1B1 is called PPT if it remains completely positive when composed with
partial transpose maps. That is,NA0B0→A1B1 is PPT if TA1 ◦NA0B0→A1B1 ◦TA0 ≥ 0, where T is the
transpose operation on the given system. Such maps play an important role in the study of entanglement
since they provide a mathematically-friendly relaxation on the class of LOCC [49]. A superchannel
ΘAB→A′B′

is called completely PPT-preserving if 1AB ⊗ Θ[NAABB ] is PPT for any PPT channel
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NAABB , where A and B are arbitrary auxiliary systems and 1AB is the identity supermap [50]. A
general superchannel can be realized by pre-processing quantum channel that is connected to some
post-processing channel via an auxiliary memory system. If these pre- and post-processing channels
are themselves PPT, then the resulting superchannel is completely-PPT preserving (see Fig. 4). The
open problem is whether every completely PPT-preserving superchannel can be realized in this way.

Figure 4: One type of completely PPT-preserving superchannels is composed of pre- and post-processing
PPT channels. Can all completely PPT-preserving superchannels be built in this way?

• Entanglement Distillation using Local Incoherent Operations - Presenter: Eric Chitambar. In the
quantum resource theory of coherence, one is restricted to performing some family of quantum op-
erations that cannot generate coherence. The most commonly studied are the so-called incoherent
operations [51]. These operations can be extended to bipartite systems, and when additional locality
constraints are placed on the operations, one arrives at a resource theory in which only local inco-
herent operations and classical communication (LIOCC) are free. The canonical resource states are
local maximally coherent bits (cobits), |φ+〉A and |φ+〉B where |φ+〉 =

√
1/2(|0〉+ |1〉), as well as a

maximally entangled coherent bit (ecobit) |Φ+〉 =
√

1/2(|00〉+ |11〉). A general distillation protocol
then involves converting a given bipartite state ρAB into a triple of cobits and ecobits (see Fig. 5). The
problem of asymptotic distillation for a pure state |Ψ〉AB has been studied in Ref. [52], and an optimal
point in the rate region has been identified as

(RAco, R
B
co, R

AB
eco ) = (0, S(Y |X)∆(Ψ), I(X : Y )∆(Ψ)),

where ∆(Ψ)XY is the fully classical state obtained from locally dephasing |Ψ〉AB . However, it is
known that higher entanglement rates RABeco are achievable at the cost of reducing the coherence rate
RBco, but optimal rate has not been solved. The open problem is to determine the largest achievable rate
of ecobit distillation from an arbitrary pure state |Ψ〉AB using LIOCC.

Figure 5: In the resource theory of distributed coherence, an operational task is to distill local coherent bits
φ+A and φB+ as well as entangled coherent bits ΦAB+ . In general there will be a trade-off in distillation rates.
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• Tightening of the Alicki-Fannes Inequality - Presenter: Mark Wilde. The Alicki-Fannes Inequality
puts a bound on the difference of conditional von Neumann entropies [53], and it reads

|S(A|B)ρ − S(A|B)σ| ≤ 4ε log2 |A|+ 2h(ε), (4)

where ε ≥ ‖ρ − σ‖1 and h(ε) = −ε log2 ε − (1 − ε) log2(1 − ε). This is a useful inequality in quan-
tum information theory as it establishes a uniform continuity bound on the conditional von Neumann
entropy. Recently, the RHS has been tightened to 2ε log2 |A| + (1 + ε)h( ε

1−ε ) [54], however it is not
known whether this is optimal in the sense that it can be satisfied by certain pairs of states. For classical-
quantum (CQ) states, an improvement can be made by replacing the RHS with ε log2(|A|−1)+h2(ε),
and this is known to be optimal [55]. The open problem is whether the Alicki-Fannes Inequality can
be improved in the fully quantum case to the following form, which would be tight using the pair of
states used in Remark 3 of [54]:

|S(A|B)ρ − S(A|B)σ| ≤ ε log2(|A|2 − 1) + h(ε). (5)

4 Outlook
A common theme in physics is the unification of theories and models that at first glance may seem completely
unrelated. Most notable in this regard is the successful unification of the three non-gravitational forces in
nature. Such an amalgamation not only leads to new discoveries, but it also has the potential to profoundly
change the way we perceive the world around us. With the advent of quantum information science, many
seemingly unrelated properties of physical systems, such as entanglement, asymmetry, and athermality, have
now become recognized as resources. This recognition is profound as it allows them to be unified under the
same roof of quantum resource theories. Entanglement, athermality, and asymmetry, are no longer regarded
as just interesting physical properties of a quantum system, but they now emerge as resources that can be
utilized and manipulated to execute a variety of remarkable tasks, such as quantum teleportation.

This BIRS workshop has focused on the interface between quantum resource theories, operator theory,
and (quantum) mathematical statistics. We believe the results presented at the workshop and the discussions
shared by its participants will have a lasting impact on all the fields involved. It is an exciting time for quantum
resource theories, and we thank BIRS for providing the opportunity to further advance this important subject.
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