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The project is an ongoing one; the first paper appeared in 1995. The program is to classify, up to
orbit equivalence, group actions and, more generally, étale equivalence relations on Cantor speaces.
During the RIT period at BIRS, we worked on the case of minimal, free Z2 actions on Cantor sets.

The following set of notes was written by Ian Putnam as a survey of the current state of the
program. The RIT result is covered in the last section.

1 Introduction

We will be considering dynamical systems, usually minimal, on a Cantor set. By a Cantor set, we
mean a compact, totally disconnected metric space with no isolated points. For dynamical systems,
we include free actions of a countable group by homeomorphisms. However, our definition, which
follows below, will include more general systems. The main problem is to understand the orbit
structure of such systems. Specifically, if we are given two such systems, is there a homeomorphisms
between the underlying spaces which carries the orbits of one system to the orbits of the other?

This is the natural extension to the topological case of the program in ergodic theory initiated
by Henry Dye [Dy], who considered invertible measure preserving transformations of a Lebesgue
space. This was continued by many others, most notably Krieger[Kr1] and Connes, Feldman and
Weiss [CFW]. In another direction is the Borel case.

2 Group actions

Suppose that X is a compact metric space and that G is a countable, abelian group. (In fact, abelian
is not really required here.) Suppose that ϕ is an action of G on X by homeomorphisms. That is, for
every a in G, there is a homeomorphism ϕa : X → X which satisfy ϕa+b = ϕa ◦ ϕb and ϕ0(x) = x,
for all a, b in G and x in X .

We assume that the action is free; that is, if ϕa(x) = x for some x in X and a in G, then
a = 0. We say that the action is minimal if, for every point x in X , its orbit under the action,
{ϕa(x) | a ∈ G}, is dense in X .

1
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3 Étale equivalence relations

The group actions which we described above are our main objects of interest. However, we will
expand the class of dynamical systems which we are considering. This extended class will be equiv-
alence relations endowed with some extra structure. It includes the case of a group action by
considering the relation in which the equivalence classes are the orbits. This extension is not merely
done for the sake of maximal generality; we will use some of the others (AF-relations) in an essential
way.

We begin with some notation and basic ideas. For the first part, we will allow more general
topological spaces than just Cantor sets. We let X be a compact metric space and we consider an
equivalence relation R on X . Shortly, we will restrict to the case that R has countable equivalence
classes.

We let r and s (for range and source) denote the two canonical projections from R to X ; s(x, y) =
x, r(x, y) = y. We say that R is minimal if every equivalence class is dense in X .

Definition 1 Let X be a compact metrizable space, R be an equivalence relation on X and T be a
topology on R. We say that R, T is étale if

1. T is Hausdorff, second countable and σ-compact,

2. the diagonal {(x, x) | x ∈ X} is open in R,

3. the maps r, s : R → X are local homeomorphisms; that is, for every (x, y) in R, we may find an
open set U in T such that r(U) and s(U) are open in X and r : U → r(U) and s : U → s(U)
are homeomorphisms,

4. if U and V are open sets as above, then the set

UV = {(x, z) | (x, y) ∈ U, (y, z) ∈ V, for some y}

is also open and

5. if U as above is open, then so is U−1 = {(x, y) | (y, x) ∈ U}.

When T is understood, we simply say that R is étale.

(We make some remarks on the terminology, which comes from the theory of groupoids. An
equivalence relation is also a principal groupoid. The term ’étale’ is relatively recent; in the past
these have also been known as ’r-discrete groupoids with counting measure as Haar system’. See
[Ren, Pat, GPS2].)

This may seem an unusual definition, so we spend some time elaborating on it. The idea is that
T provides R with the structure of a dynamical system. The key point is item 3. Consider (x, y)
in R and let U be as in part 3 of the definition. Consider the restriction of s to U , s|U . The map
γ = r ◦ (s|U)−1 is a homeomorphism from s(U) to r(U), both open subsets of X . The graph of
γ is simply U , which is contained in R. So we may think of R as being made up of the graphs of
local homeomorphisms of X . This collection is closed under composition (part 4) and under taking
inverses (part 5). Part 2 of the definition is the analogue of freeness of an action.

Let R be an étale equivalence relation on X . If U is an open subset of R as in part 3 above, then
we refer to U as a graph.

It is probably worthwhile to give a very simple example of a relation which does not admit
such a topology. Let R be the relation on the unit interval [0, 1] whose classes are all singletons,
except for {0, 1}. It is clear that there is no local homeomorphism from a neighbourhood of 0 to a
neighbourhood of 1, taking 0 to 1 and whose graph is contained in the relation.

Here are some basic facts to keep in mind. We state them without proof.

1. There are relations, even minimal ones, which admit no such topology.
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2. If R is étale, then its equivalence classes are countable. (One shows that, for any x in X ,
r−1{x} ⊂ R is discrete and closed and then uses σ-compactness.)

3. If R is étale and compact in the topology, then the topology must be the relative topology
from R ⊂ X ×X . Moreover, in this case, the equivalence classes are finite. In fact, there is a
uniform upper bound on the number of elements in an equivalence class.

4. If R is étale and has an infinite equivalence class, then T is not the relative topology of X×X .

5. If R has an étale topology, it may not be unique. (This may seem a little surprising. Just to
make things clear, the topology on X is fixed.)

We note one easy consequence of the definitions.

Theorem 2 Suppose that R is an étale equivalence relation on X and that R′ is an open sub-
equivalence relation of R. Then R′ is also étale, in the relative topology from R.

Finally, we note that there is a natural notion of invariant measure for étale relations. A measure
µ is R-invariant [Ren] if

µ(r(U)) = µ(s(U)),

for all graphs U ⊂ R. We let M(X,R) denote the set of all R-invariant probability measures on
X . There is a notion of amenability for relations. Describing this would take us too far afield, but
we note that amenable relations always possess such measures [Ren]. We will have nothing to say
about the case that there are no finite R-invariant measures.

3.1 Group actions (revisited)

We recall the situation of the earlier section, where X is a compact metric space, G is a countable
abelian group and ϕ is a free action of G on X . Our relation of interest in this case is

Rϕ = {(x, ϕa(x)) | x ∈ X, a ∈ G}.

To topologize Rϕ, we use the fact that the map sending (x, a) in X × G to (x, ϕa(x)) is bijective,
since the action is free. We give G the discrete topology and X ×G the product topology and use
the map to transfer this to Rϕ. In other words, a sequence, (xn, ϕ

an(xn)) converges to (x, ϕa(x)) in
this topology if and only if xn converges to x in X and an converge to a in the discrete topology.
(See [Ren].)

This means that the graph of each homeomorphism ϕa is a compact open set in Rϕ. Letting U be
this graph, the associated map γ from our earlier discussion is just ϕa. One can think of this as the
special case where our maps γ are actually given by global rather than just local homeomorphisms
of X .

Theorem 2 takes on a new significance in this context: if one considers R = Rϕ arising from a
group action, it is possible that open subequivalence relations need not be themselves group actions.
More than just possible, this will be a critical step for us later.

3.2 AF-relations

In this section, we introduce one of the most important classes of étale relations called AF-relations
[Ren, GPS2]. The terminology (which actually comes from C∗-algebra theory) represents ’approxi-
mately finite’. In these examples, the underlying space is totally disconnected.

Definition 3 An étale relation R on X is an AF-relation if X is compact, metrizable and totally
disconnected and if there are

R1 ⊂ R2 ⊂ · · ·

such that ∪nRn = R and Rn ⊂ R is a compact open subequivalence relation, for each n.
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We will have much more to say about these examples in a later section. For the moment, we want
to point out that by including these relations, we are expanding significantly from group actions by
noting the following.

Theorem 4 ([GPS2]) Let ϕ be a free action of a countable group G on a compact, totally discon-
nected metric space, X. The relation Rϕ is an AF-relation if and only if the group G is locally finite;
that is, there is an increasing sequence of finite subgroups of G, G1 ⊂ G2 ⊂ · · · whose union is G.

We give a sketch of the proof. We first suppose that G is locally finite and choose a sequence of
subgroups as in the theorem. For each n ≥ 1, we let

Rn = {(x, ϕa(x)) | x ∈ X, a ∈ Gn}.

It is easy to see that each Rn is a compact open subrelation of Rϕ and their union is Rϕ.
To prove the converse statement, we suppose that Rϕ may be written as an increasing union of

compact open subrelations Rn, n ≥ 1. Select a finite subset F of G. We will argue that the subgroup
of G generated by F , denoted < F > will be finite. It is fairly easy to see that this then implies
that G is locally finite. Consider U , the union of the graphs of the elements of F , which is compact
in Rϕ. Since the Rn form an increasing open cover, U is contained in Rn, for some n. Since Rn is a
subrelation, it is fairly easy to check that the graph of any element < F > is also in Rn. This means
that the orbits of any point in X under < F > is finite. By the freeness of the action, this implies
that < F > is finite.

4 C∗-algebras (briefly)

The notion of an étale equivalence relation comes from C∗-algebra theory. We will not use any
C∗-algebra theory in the remainder of these notes or even in the complete proofs. However, we take
a few moments to give some idea of the connections. More information may be found in [Ren, Pat].

A C∗-algebra, A, (briefly) is a *-algebra over the complex numbers equipped with a norm ‖ · ‖.
That is, we have addition, scalar multiplication and a ring multiplication, which is, in general, not
commutative. There is also a conjugate linear involution a → a∗ satisfying (ab)∗ = b∗a∗. The ring
multiplication need not, in general, have a unit, but the algebras we construct here will be unital.
Of course, the algebraic operations should be continuous in the topology coming from the norm.
Moreover, regarded as a metric space with d(a, b) =‖ a − b ‖, A should be complete. Finally, the
norm should satisfy the C∗-condition, ‖ a∗a ‖=‖ a ‖2, for all a in A. This condition may seem
obscure to the non-expert, but is really quite powerful.

The first example is the complex numbers, with ∗ being complex conjugation and the usual norm.
The second example is Mn(C), the algebra of n×n complex matrices. The ∗ operation is conjugate
transpose and the norm is

‖ a ‖= sup{‖ aξ ‖2| ξ ∈ C
n, ‖ ξ ‖2= 1},

for all a in Mn(C), where ‖ · ‖2 denotes the l2-norm on Cn. This example can be easily generalized
to the algebra of bounded linear transformation on a complex Hilbert space, by replacing Cn by the
Hilbert space.

If R is an étale equivalence relation on a space X (not necessarily Cantor), we may construct a
C∗-algebra as follows. Let Cc(R) denote the set of continuous, compactly supported complex-valued
functions on R. It is a linear space in an obvious way. The product and involution are defined by
the formulas

(f · g)(x, y) =
∑

(x,z)∈R

f(x, z)g(z, y)

f∗(x, y) = f(y, x),

for all f, g in Cc(R) and (x, y) in R. It is a subtle point here that the product f · g is again in Cc(R).
The proof uses the étale property of R.
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The formula above for the product should remind one of matrix multiplication. Indeed, if X =
{1, 2, . . . , n} and R = X ×X , then this algebra is just Mn(C).

The issue of a norm is more subtle. For each point x0 in X , one can consider the Hilbert space
of l2 sequences on its equivalence class, [x0]. Each f in Cc(R) defines a linear transformation on this
Hilbert space by

fξ(x) =
∑

(x,y)∈R

f(x, y)ξ(y),

for x in [x0]. This transformation is bounded and we define

‖ f ‖= sup{‖ f ‖x0
| x0 ∈ X},

where ‖ · ‖x0
denotes the operator norm for the Hilbert space l2[x0]. Again in the finite case above,

this gives the same norm on Mn(C). Of course, it is necessary to prove that this supremum is
finite. Finally, the algebra Cc(R) is usually not complete in this norm. We complete it to obtain
a C∗-algebra which is denoted by C∗

r (R) called the reduced C∗-algebra of R. The reason for the
subscript r and the term ’reduced’ is that there are other choices for the norm. The one above is
arguably the most interesting. For amenable equivalence relations, all (reasonable) norms are the
same.

5 Isomorphism and Orbit equivalence for étale relations

There are two natural notions of equivalence between two étale relations which we describe now.
Classifying systems up to orbit equivalence is our main objective.

Definition 5 ([GPS2]) Let (X,R) and (X ′, R′) be two étale relations.

1. We say that (X,R) and (X ′, R′) are orbit equivalent and write (X,R) ∼ (X ′, R′) if there is a
homeomorphism h : X → X ′ such that

h× h(R) = R′.

That is, the map h carries R-equivalence classes exactly to R′-equivalence classes.

2. We say that (X,R) and (X ′, R′) are isomorphic and write (X,R) ∼= (X ′, R′) if there is a
homeomorphism h : X → X ′ such that

h× h(R) = R′

and such that h× h : R→ R′ is a homeomorphism.

The first notion is probably the most natural one for dynamics. However, much of what we are
doing really uses the topology on R and this makes the second important. It is worth pointing out
here that what is really going on is that the topologies which are given to our relations are not
usually unique. Given an orbit equivalence h from R to another relation, we may use (h× h)−1 to
transfer the other topology back to R, but it may not agree with the original from R.

Let us also take a moment here to explain why we concentrate on totally disconnected spaces.
Just to be specific, suppose that ϕ is a free action of the group G on the compact, connected space
X and ψ is a free action of the group H on the compact, connected space Y . Also suppose that
h : X → Y is an orbit equivalence. This means that, for x in X and a in G, we may find b in H
such that h(ϕa(x)) = ψb(h(x)). Fix a for the moment and for each b in H , let Bb be the set of x
where the equation above holds. The sets Bb, b ∈ H form a countable partition of the space X . It
is fairly easy to check that each of these sets is closed. By a result of Sierpinski, as X is connected,
one of these sets must be all of X and the rest are empty. We will not pursue this, but it allows a
rather precise (and very restrictive) description of the map h.

We have hinted at the importance of AF-relations. It leads us to the following definition.
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Definition 6 ([GPS2]) Let (X,R) be an étale relation with X totally disconnected. We say that
(X,R) is affable if (X,R) is orbit equivalent to an AF-relation (X ′, R′).

The reason for the terminology follows from the last comment of the previous paragraph. If
(X,R) is orbit equivalent to an AF-relation, we may use the orbit map to transfer the topology to
R. That is, R may be given a new topology in which it is AF. So that R is ’AF-able’ or affable.

6 The construction of AF-relations

One thing which was missing from our definition of AF-relations earlier was a general method for
producing such systems. We present this now.

We begin with a Bratteli diagram: a locally finite, infinite directed graph as shown below. (See
[HPS, Ef].)

t

t

t

t

t

t

t

t

�
�

�

H
H

H

�
�

�

H
H

H

�
�

�

H
H

H

V0 V1 V2E1 E2 E3

e

s(e)

r(e)

It consists of a vertex set V which is partitioned into a sequence of non-empty finite sets, Vn, n ≥ 0,
and an edge set, E, which is also partitioned into a sequence of non-empty finite sets, En, n ≥ 1.
Each edge e in En has a source, s(e) in Vn−1, and a range, r(e) in Vn. (This is a different use of
the terms range and source than earlier, but it should not cause any confusion.) For simplicity,
we assume that V0 consists of a single vertex and for every other vertex v, r−1{v} and s−1{v} are
non-empty. (There are no sources, other than in V0, or sinks.)

The space X is the set of infinite paths in the diagram. That is,

X = {(e1, e2, . . .) | en ∈ En, r(en) = s(en+1), n ≥ 1}.

It is given the relative topology from the product space ΠnEn in which it is compact, metrizable
and totally disconnected. For each N ≥ 0, we define

RN = {(e, f) | e, f ∈ X, en = fn, for all n > N}.

This set is given the relative topology of the product X×X . It is easy to check that RN is a compact
étale equivalence relation (and hence each equivalence class is finite), and that RN is an open subset
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of RN+1, for all N . We define
R = ∪∞

N=0RN

and it is given the inductive limit topology.
It is not difficult to check that R is an étale equivalence relation on X . It is worth considering

for a moment the local homeomorphisms we described earlier. Suppose that (e1, e2, . . . , eN ) and
(f1, f2, . . . , fN) are two finite paths in the diagram, ending at the same vertex v = r(eN ) = r(fN ).
We let U be the clopen set in RN

U = {(e′, f ′) | e′n = en, f
′
n = fn, n ≤ N, e′n = f ′

n, n > N}.

The map γ is

γ(e1, e2, . . . , eN , e
′
N+1, e

′
N+2, . . .) = (f1, f2, . . . , fN , e

′
N+1, e

′
N+2, . . .)

for all sequences of the form (e1, e2, . . . , eN , e
′
N+1, e

′
N+2, . . .) in X .

We denote X by X(V,E) and R = R(V,E).

Theorem 7 ([GPS2]) Let R be an AF-relation on a totally disconnected compact metrizable space
X. Then (X,R) is isomorphic to (X(V,E), R(V,E)), for some Bratteli diagram V,E.

7 Invariants for Cantor étale relations

We will introduce two invariants for Cantor minimal systems. These will be ordered abelian groups
[Go, Ef]. By an order on an abelian group, G, we mean a subset G+ such that G+ ∩ (−G+) = {0},
G+ +G+ ⊂ G+ and G+ −G+ = G. The set G+ is usually referred to as a positive cone. An order
in the usual sense is obtained by setting a ≥ b if and only if a− b is in G+. Also, our ordered groups
will have a distinguished positive element. Such an element, u, is called an order unit if for every a
in G+, we have nu− a is in G+, for some n ≥ 1.

We let C(X,Z) denote the continuous Z-valued functions on X . It is an abelian group with the
operation of pointwise addition. If E is a clopen subset of X , we let χE denote its characteristic
function, which is in C(X,Z).

We define B(X,ϕ) to be the subgroup of C(X,Z) generated by the functions χr(U)−χs(U), where
U is a compact graph in R.

We define Bm(X,R) to be the subgroup of C(X,Z) generated by the functions f such that∫
X
fdµ(x) = 0, for all µ in M(X,R). (In the case that there are no invariant probability measures,

we have Bm(X,R) = C(X,Z).) It is clear that B(X,R) ⊂ Bm(X,R).

Definition 8 Let R be an étale relation on the Cantor set X. We define

D(X,R) = C(X,Z)/B(X,R),

with positive cone
D(X,R)+ = {[f ] | f ∈ C(X,Z), f ≥ 0},

and order unit u = [1].
We also define

Dm(X,R) = C(X,Z)/Bm(X,R),

with positive cone
Dm(X,R)+ = {[f ] | f ∈ C(X,Z), f ≥ 0},

and order unit u = [1].

Although the notation and context are slightly different, a version may be found in [HPS]. Notice
that Dm(X,R) is a quotient of D(X,R).

Earlier, we had two notions, isomorphism and orbit equivalence, between Cantor étale relations.
We now spell out the precise sense in which our ’invariants’ are invariant.



8 THE INVARIANTS OF AN AF-RELATION 8

Theorem 9 Let (X,R) and (X ′, R′) be two étale relations on Cantor sets. If h : X → X ′ is a
homeomorphism which implements an isomorphism between the relations, then the map h∗[f ] =
[f ◦ h], f ∈ C(X ′, R′), is an isomorphism from D(X ′, R′) to D(X,R) mapping D(X ′, R′)+ onto
D(X,R)+ and preserving the order units. If h : X → X ′ is a homeomorphism which implements
an orbit equivalence between the relations, then the map h∗[f ] = [f ◦ h], f ∈ C(X ′, R′), is an
isomorphism from Dm(X ′, R′) to Dm(X,R) mapping Dm(X ′, R′)+ onto Dm(X,R)+ and preserving
the order units.

The first statement is quite easy. For the second, it is fairly easy to check that an orbit equivalence
will induce a bijection between the sets of invariant measures of the two systems.

8 The invariants of an AF-relation

The structure of the invariants introduced in the last section are quite well-understood for AF-
relations.

First, we want to describe briefly how, if one is given a Bratteli diagram V,E, the invariant
D(X(V,E), R(X,R)) can be computed. For each n ≥ 0, let Z

Vn = {f : Vn → Z}. This group is
given the simplicial or standard order, f ∈ ZVn+ if and only if f(v) ≥ 0 for all v in Vn. The edge
set En gives a group homomorphism αn : ZVn−1 → ZVn as follows. Either one can consider En as
providing a rectangular adjacency matrix and the homomorphism is simply multiplication by this
matrix, or equivalently, we have, for f in ZVn−1 ,

αn(f)(v) =
∑

r(e)=v

f(s(e)), v ∈ Vn.

This provides an inductive system of ordered abelian groups.

Theorem 10 (See [HPS]) For an AF-relation, (X(V,E), R(V,E)), the group
D(X(V,E), R(V,E)) is the inductive limit of the system (ZVn , αn), in the category of ordered abelian
groups.

Such a group is called a dimension group. A fundamental result in the subject is the following
result.

Theorem 11 (Effros-Handelman-Shen [Ef, Go]) A countable, ordered abelian group G,G+ is
a dimension group if and only if

1. it is unperforated: if g is in G and ng is in G+ for some positive integer n, then g is in G+,
and

2. it satisfies the Riesz interpolation property: if g1, g2, h1, h2 are in G such that gi ≤ hj for all
1 ≤ i, j ≤ 2, then there exists g in G such that gi ≤ g ≤ hj for all 1 ≤ i, j ≤ 2.

The point is that it is relatively easy to find groups which satisfy the two conditions of the
theorem. To any such group, we may find an AF-relation, (X,R), having D(X,R) isomorphic to
that group.

An order ideal in an ordered abelian group G,G+ is a subgroup H such that H ∩G+ generates
H as a group and whenever g in G+ and h in H ∩ G+ satisfy g ≤ h, then g is in H . A dimension
group is simple if the only order ideals are 0 and G. (See [Go].)

Theorem 12 (See [HPS]) An AF-relation (X,R) is minimal if and only if the associated dimen-
sion group D(X,R) is simple.
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9 The strategy for orbit equivalence results

We now take a few lines to set out our strategy, without being too precise about all the terms, for
proving orbit equivalence results. There are three steps:

1. Classify minimal AF-relations.

2. Let R be a minimal AF-relation on a Cantor set X . Suppose that Y1, Y2 ⊂ X are ’small’ closed
subsets and α : Y1 → Y2 is a homeomorphism. Show that the relation

R ∨Graph(α)

is orbit equivalent to R. Here, ∨ denotes the equivalence relation generated by the two sets.

3. For a free, minimal action ϕ of the groupG on the Cantor setX , find a sequence R1 ⊂ R2 ⊂ · · ·
of compact open subequivalence relations of Rϕ, whose union, denoted by R, is minimal, and
Y1, Y2, α as above such that

Rϕ = R ∨Graph(α).

With these steps, the problem of orbit equivalence for actions of the group G is reduced to that
of AF-relations. Of course, the third step above depends on the group G. We will see that we have
a complete answer for the case G = Z and a partial one for the group G = Z2.

This is the same strategy used by Dye in the ergodic measure preserving case. For the first step,
there is only AF-relation in this case, up to orbit equivalence. For the second step, the meaning of
’small’ in the definition of the sets Y1 and Y2 is measure zero. Then the result needed for that step is
trivial. The third step is done by using Rohlin partitions for the appropriate group. It is the classic
Rohlin lemma for G = Z. This can be extended to include amenable groups.

10 Classification of AF-relations

One of the most important features of AF-relations is that they may be classified up to isomorphism
and also (at least in the minimal case) up to orbit equivalence by the invariants we have discussed.

Theorem 13 (Elliott-Krieger [Kr2]) For AF-relations (X,R), the triple
(D(X,R), D(X,R)+, [1]) is a complete invariant for isomorphism.

Building on this, one may also obtain the following result, but the hypothesis of minimality is
also needed.

Theorem 14 (Giordano-Putnam-Skau [GPS1]) For minimal AF-relations (X,R), the triple
(Dm(X,R), Dm(X,R)+, [1]) is a complete invariant for orbit equivalence.

We will not discuss the proofs of these. The second result appears in [GPS1] as a consequence of
the classification for Z-actions. In hindsight, this seems to be putting the proverbial cart before the
horse. A direct proof can be given, and it now seems much more logical to proceed with this result
first.

11 The absorption theorem

We now turn our attention to the second step of our strategy. That is, showing that a minimal AF-
relation may be enlarged slightly and remain orbit equivalent to the result. Here, the topological
case is much more subtle than, say, the measurable. The precise result, which we refer to as the
absorption theorem, follows below.

Theorem 15 ([GPS2]) Let X,R be a minimal AF-relation. Suppose that Y1 and Y2 are closed
subsets of X and α : Y1 → Y2 is a homeomorphism such that the following hold.
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1.
R ∩ (Y1 × Y2) = ∅,

2. µ(Y1) = µ(Y2) = 0, for all µ in M(X,R),

3. R ∩ (Yi × Yi) is an étale relation on Yi, for i = 1, 2,

4. α is an isomorphism from (Y1, R ∩ (Y1 × Y1)) to (Y2, R ∩ (Y2 × Y2)).

Then the relation
R ∨Graph(α)

is orbit equivalent to R.

12 Minimal Z-actions

Our main objective is the classification up to orbit equivalence. However, this seems a good time to
note the following result regarding isomorphism for the relations coming from Z-actions.

Theorem 16 (Boyle, see [GPS1]) Let ϕ and ψ be two minimal Z-actions on Cantor sets. The
relations Rϕ and Rψ are isomorphic if and only if ϕ is conjugate to ψ or to ψ−1.

Now we return to the problem of orbit equivalence, concentrating on the group G = Z.

Theorem 17 (Giordano-Putnam-Skau [GPS1]) Let ϕ be a minimal action of Z on the Cantor
set X. Then the relation Rϕ is orbit equivalent to an AF-relation. (That is, Rϕ is affable.)

The following is an immediate consequence of this result and Theorem 14.

Corollary 18 The triple (Dm(X,R), Dm(X,R)+, [1]) is a complete invariant for orbit equivalence
for the class of Cantor systems consisting of minimal AF-relations and minimal Z-actions.

We will sketch a proof of Theorem 15, showing how the absorption theorem of the last section is
used.

Begin by selecting a sequence of clopen sets U1 ⊃ U2 ⊃ · · · , whose intersection is a single point
y. For each n ≥ 1, let Rn denote the relation generated by {(x, ϕ1(x)) | x ∈ X − Un}. Notice that
if any Un were empty, Rn would be Rϕ. As it is, since Un is open and ϕ is minimal, any point in
X will enter Un after a finite number of iterations of ϕ or ϕ−1. From this, it follows that the Rn-
equivalence class of the point in X is finite. A slightly more careful analysis involving the continuity
of the return times of ϕ on Un shows that Rn is compact and open. It is clear that Rn ⊂ Rn+1, for
all n ≥ 1. We let R = ∪nRn, which is an AF-relation. It is easy to check that R is minimal. In fact,
every R-class is also a ϕ-orbit, except for the orbit of the point y. We let Y1 = {y}, Y2 = {ϕ1(y)}
and α = ϕ1. We are then in a position to apply the absorption Theorem 15. (It is surprisingly easy
here to check the hypotheses.) Moreover, we have

Rϕ = (∪nRn) ∨ {(y, ϕ1(y))}

= R ∨Graph(α)

∼ R

and we are done.
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13 Minimal Z2-actions

The results of this section are quite recent and are in preparation [GPS3]. We consider a minimal,
free action, ϕ, of the group Z

2 on the Cantor set X . Before we can state our main result, we need
some basic notions about cocycles. The first definition is a standard one, although our interest is
only in integer-valued cocycles. The next two are new, as far as we know.

Definition 19 Let R be an étale equivalence relation on X. A cocycle or more accurately a 1-
cocycle for R is a continuous function

θ : R → Z

such that
θ(x, z) = θ(x, y) + θ(y, z),

for all (x, y), (x, z) in R.

Definition 20 Let (X,ϕ) be a minimal free Z2 Cantor system and let C be a subset of Z2. A cocycle
θ for Rϕ is positive with respect to C if θ(x, ϕn(x)) ≥ 0 for all x ∈ X and n ∈ C.

We say that θ is strictly positive if it is positive and θ is a proper as a map from {(x, ϕn(x)) |
x ∈ X,n ∈ C} to Z.

Definition 21 Let (X,ϕ) be a minimal free Z2 Cantor system and let θ be a cocycle for Rϕ. For
any positive integer M , we write θ ≤ M−1 if |θ(x, ϕn(x))| ≤ 1, for all x in X and n in Z2 with
|n| ≤M , where |n| = |(n1, n2)| = max{|n1|, |n2|} denotes the L∞ norm on Z

2.

For any a, b in Z2 which generate it as a group, we define

C(a, b) = {ia+ jb ∈ Z
2 | i, j ≥ 0}.

Theorem 22 Let (X,ϕ) be a free, minimal Z
2 Cantor system. Suppose that for every pair of

generators, a, b, of Z2 and every positive integer M , there is a cocycle θ such that θ is strictly
positive on C(a, b) and θ ≤ M−1. Then Rϕ is orbit equivalent to an AF-relation. (That is, Rϕ is
affable.)

Corollary 23 The triple (Dm(X,R), Dm(X,R)+, [1]) is a complete invariant for orbit equivalence
for the class of Cantor systems consisting of minimal AF-relations, minimal Z-actions and free,
minimal Z2-actions satisfying the hypotheses of Theorem 22.

The actual theorem has a slightly weaker version of the hypothesis. In any case, the condition
is a little strange and we have very little insight at this point whether or not it is reasonable. We
know of no free, minimal Z2action which does not satisfy the condition. We know of two classes of
examples which do satisfy the hypothesis which we describe now.

Let p be prime (although the result is surely true for any integer greater than 1). Let X be the
p-adic integers. That is, X = Πn≥0{0, 1, . . . , p − 1}. It is a group with addition done coordinate-
wise modulo p and with carry over to the right. Suppose that α and β are two elements such that
iα+ jβ = 0 only if i = j = 0 and such that the subgroup they generate is dense. (It is not difficult
to find such pairs.) We define a Z2-action by rotation by α and β; that is, ϕ(i,j)(x) = x+ iα+ jβ,
for all x in X and (i, j) in Z2. This system satisfies the hypotheses of the theorem.

For the second example, we let S1 be the circle, which we write as R/Z. Suppose that α, β
are real numbers such that 1, α, β are linearly independent over the rationals. We begin with the
Z

2-action on S1 obtained by rotating by α and β - see the formula in the last example. It is possible
to ’cut’ the circle along an orbit of this action (or even countably many orbits). Take a single point
and replace it by two points separated by a gap. Repeat this process for each point in its orbit under
the Z2-action, using smaller and smaller gaps. The result is a Cantor set which we denote by X .
The action extends to X in an obvious way and this is a free minimal Z2-system. It also satisfies
the hypotheses of the theorem.
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We conclude with a few general remarks about the hypothesis of the theorem. Let (X,R) be a
minimal Cantor étale equivalence relation. If f is in C(X,Z), then bf(x, y) = f(y)− f(x) is called a
coboundary. The set of all cocycles form an abelian group under addition. The coboundaries form
a subgroup and we let H1(X,R) be the quotient group. If we now restrict to the case of a free,
minimal Z2-action, ϕ, we may find a canonical copy of the group Z2 in H1(X,Rϕ). Specifically, for
a in Z2, let θa(x, ϕ

b(x)) =< a, b >, where <,> denotes the usual inner product. If every cocycle
is equal to one of these (up to coboundaries), then it is not hard to see that the hypothesis of the
theorem fails. (It is impossible to make small cocycles from the θa.) We note that it does not imply
that the conclusion fails.

It is interesting to note that in our first example, we have a short exact sequence

0 → Z → H1(X,Rϕ) → Z[1/p] → 0.

In particular, the group H1 is rank two, but slightly larger than Z2. In the second example,
H1(X,Rϕ) ∼= Z3. So in both cases, the cohomology is slightly larger than just Z2, but it is sufficiently
large to provide enough cocycles for application of the theorem.
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