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There are 2 discussion/open problem sessions scheduled with 4 leaders. To help them arrange
these informal sessions, please send or give your mathematical problems and points for
discussion to Steve Kirkland (kirkland@math.uregina.ca). In the past, sessions similar to
these have been an excellent feature of WCLAM meetings.

Proceedings of the conference will be published in a special volume of ELA, regularly refer-
eed. Thanks to the Editorial Board of ELA. The special editors for this volume are: Steve
Kirkland, Bryan Shader and Pauline van den Driessche. Please send your manuscript to one
of these editors as soon as possible. It will be very good to have a timely collection of papers
together with the theme of combinatorial matrix analysis.

We thank ILAS, BIRS, PIMS for their support, and Ariana Clapton (UVIC) for superb help
with putting together the program.

Organising Committee:

� Shaun Fallat (University of Regina)
� Hadi Kharaghani (University of Lethbridge)
� Steve Kirkland (University of Regina)
� Bryan Shader (University of Wyoming)
� Michael Tsatsomeros (Washington State University)
� Pauline van den Driessche (University of Victoria).
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Agenda

Friday, May 7th

9:00 C.R. Johnson �Patterns of Commutativity�
9:30 W. So �Integral Regular Graphs with Structures�
10:00 K. Vander Meulen �On Biclique Partitions and Related Matrices�
10:30 BREAK
11:00 M. Fiedler �Matrices and Graphs in Euclidean Geometry�
11:30 ILAS Sponsored Lecturer
12:00 LUNCH
12:30 LUNCH
13:00 LUNCH
13:30 D. Olesky �Minimal Spectrally Arbitrary Sign Patterns�
14:00 J. McDonald �The Peripheral Spectrum of a Nonnegative Matrix�
14:30 Z. Li �On Minimum Ranks of Sign Pattern Matrices�
15:00 T. Britz �Matrix Inversion and Digraphs: The One Factor Case�
15:30 BREAK
16:00 R. Craigen �Developments in Orthogonal Matrices�
16:30 F. Barioli �On the Minimal Rank and Path Cover Number for Certain

Undirected Graphs�
17:00 A. Pothen �Combinatorial ScientiÞc Computing and Combinatorial Matrix

Theory: The Synergy�
17:30 F. Chung �Laplacians for Directed Graphs and Non-Reversible Markov

Chains�
18:00 DINNER
19:00 DINNER
20:00 Discussion/Open Problems
21:00 - Led by Chi-Kwong Li and Steve Kirkland
22:00
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Saturday, May 8th

9:00 A. Berman �Symmetric Nonnegative Factorizations�
9:30 J. Stuart �Ray Nonsingularity and Ray Determinants�
10:00 L. Hogben �Spectral Graph Theory and the Inverse Eigenvalue Problem of a

Graph�
10:30 BREAK
11:00 S. Hedayat �Crossover Designs for Medical and Pharmaceutical Studies�
11:30 R. Loewy �The Minimum Rank of a Graph�
12:00 LUNCH
12:30 LUNCH
13:00 LUNCH
13:30 Discussion/Open Problems
14:00 - Led by Rob Craigen and Michael Tsatsomeros
14:30
15:00
15:30
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On the Minimal Rank and Path Cover
Number for Certain Undirected Graphs

Francesco Barioli

Department of Mathematics and Statistics
University of Regina, Saskatchewan, Canada

For a given undirected graph G, the minimum rank of G is the smallest possible rank over
all real symmetric matrices A whose associated graph is G. The path cover number of G
is the minimum number of vertex-disjoint paths occurring as induced subgraphs of G that
cover all the vertices of G. For trees, the relationship between minimum rank and path cover
number is completely understood. However, for non-trees only sporadic results are known.
In this talk we present formulae for the minimum rank and path cover number for graphs
obtained from vertex-sums and edge-sums of simpler graphs.

This is joint work with S.M. Fallat and L. Hogben.

Symmetric Nonnegative Factorizations

Abraham Berman

Department of Mathematics
Technion - Israel Institute of Technology, Israel

We will discuss the following questions:

1. Given a symmetric nonnegative matrix A, can it be factored as A = BBT , where B is
nonnegative?

2. If such factorizations are possible, what is the smallest possible number of columns of
B?

3. Given a symmetric nonnegative integral matrix A, can it be factored as A = BBT ,
where B is a (0, 1) matrix?
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Matrix Inversion and Digraphs: The One
Factor Case

Thomas Britz

Department of Mathematics and Statistics
University of Victoria, British Columbia, Canada

A nearly reducible matrix is a real square matrix that is irreducible but becomes reducible
whenever any nonzero entry is replaced by zero. In terms of digraphs, a real square matrix is
nearly reducible if and only if its digraph is minimally strongly connected. Nearly reducible
matrices and their digraphs are well-known to have interesting structural properties.

We describe how the inversion of a nonsingular nearly reducible matrix may be characterized
in simple terms using the associated digraph. An immediate consequence of this character-
ization is that a nonsingular nearly reducible matrix is strongly sign-nonsingular. Among
other consequences is that the inverse of a nonsingular nearly reducible matrix is itself nearly
reducible if and only if it is strongly sign-nonsingular if and only if the matrix and its inverse
contain the same number of nonzero entries.

This is joint work with Dale Olesky and Pauline van den Driessche.

Laplacians for Directed Graphs and
Non-Reversible Markov Chains

Fan Chung Graham

Department of Mathematics
University of California, San Diego, U.S.A.

We consider Laplacians for directed graphs and the Cheeger inequalities which relate the
eigenvalues of the Laplacian to other invariants for directed graphs. These techniques can
be used to deal with various problems arising in the study of non-reversible Markov chains.
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Developments in Orthogonal Matrices

Robert Craigen

Department of Mathematics
University of Manitoba, Canada

Since Sylvester�s groundbreaking paper on Inverse Orthogonal matrices in 1867 these ma-
trices have been studied in many disguises, Hadamard, weighing matrices and their various
generalizations in different rings, orthogonal designs, symmetric designs, and so on. These
are not the �orthogonal� matrices discussed in most elementary texts on linear algebra, but
n×n multiples of unitary matrices (or their analogues in some appropriate domain), usually
normalized so that all row �norms� are equal to n.

These matrices and combinatorial questions regarding their structure and existence have
caught the interest of many practical-minded people in coding theory, information theory,
communications, optical masking and Þltering, range-Þnding applications and so on. More
recently they have arisen in quantum information theory and quantum learning, chaos theory
and other emergent Þelds. Often workers in other Þelds undertake a comprehensive study of
these objects, not realising that a rich literature on them already exists.

I begin by introducing various objects to demonstrate the breadth and richness of the Þeld; I
will survey some of the major questions in the Þeld and what is known: existence, structure
and classiÞcation; and discuss some recent powerful developments. If time permits I will
outline a proposal for a uniform theory of orthogonal matrices and a uniÞcation of several
different Þelds under this banner.

Matrices and Graphs in Euclidean Geometry

Miroslav Fiedler

Inst. Comp. Sci. Acad., Pod vodár. vÿeÿźõ 2,
Czech Republic

Gram matrices form a natural link between positive semideÞnite matrices and systems of
vectors in a Euclidean space. Therefore, many properties of these matrices are reßected by
geometric relationships. Quite often, the corresponding geometric facts are difficult to Þnd
geometrically. This is in particular true about inequalities. An example follows:

Theorem 1 ([4], Thm. 4,1). Let the vectors u1, . . . un, v1, . . . , vn form a pair of biorthogonal
bases (i.e., the inner product of ui and vj is the Kronecker delta δij) in a Euclidean n-space
En. Then for the lengths,

|ui||vi| ≥ 1, i = 1, . . . , n,
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2max
i
(|ui||vi|− 1) ≤

X
i

(|ui||vi|− 1).

Conversely, if nonnegative numbers α1, . . . , αn, β1, . . . , βn satisfy

αiβi ≥ 1, i = 1, . . . , n,

2max
i
(αiβi − 1) ≤

X
i

(αiβi − 1),

then there exists in En a pair of biorthogonal bases ui, vj, such that

|ui| = αi, |vi| = βi, i = 1, . . . , n.

In matrix theory, various relatively new directions appeared which did not have analogies in
Euclidean geometry, as say, completion problems, combinatorial matrix theory, Hadamard
products, and others. Some rare exceptions in completion problems could be, however,
mentioned.

As usual, an n-simplex in En (a generalization of the triangle in the plane, tetradehron in
the three-dimensional space) is determined by its n + 1 vertices, say, A1, . . . , An+1. It has
edges AiAj , (n − 1)-dimensional faces ωi (opposite Ai), interior angles φij (between ωi and
ωj), etc. One can ask about necessary and sufficient conditions for the lengths of some set
of edges that they are edges of some n-simplex. (For instance, strict triangle inequalities
have to hold for every �closed� triple, and a strict �polygonal inequality� for every closed
polygon.) Similarly as in matrix theory, graphs play here an important role.

Theorem 2 ([3], Thm. 3,1) A set of lengths of edges can serve as the set of lengths of edges
of an n-simplex if and only if it is the set of lengths of edges of such simplex all interior
angles of which opposite to missing edges are right.

Let us note that such simplex is -up to its position in the space- uniquely determined.

For completeness, let us mention an important -and well known in various modiÞcations-
condition for the set of all lengths of edges in an n-simplex:

Theorem 3 ([1]). The numbers eij can serve as squares of the lengths of edges between Ai
and Aj, eii = 0, if and only ifX

i,j

eijxixj < 0, whenever
X
i

xi = 0.

Remark. This is equivalent to the condition that the matrix

M0 =

Ã
0 eT

e M

!
,
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where e is the column vector of all ones and M = (eij) (called the Menger matrix in [5])
is elliptic, i.e. has one eigenvalue positive and the remaining negative. The inverse of the
matrix M0 is then a (−1

2
)- multiple of the matrix

Q0 =

Ã
q00 qT0
q0 Q

!
, (1)

where the matrix Q is the Gram matrix of the outer normals in the above mentioned n-
simplex (in a certain way normalized in order that the sum of the normals be zero).

As is well known, there is an intimate relationship between the irreducibility of a symmetric
matrix and the connectedness of the corresponding (undirected) graph:

Theorem 4. Let A = (aik) be an n × n symmetric matrix, G = (N,E) its graph, where
N = {1, . . . , n}and E the set of unordered pairs (i, k), i 6= k, for which aik 6= 0. Then A
is irreducible (i.e. for no simultaneous permutation of rows and columns having the formÃ
A1 0
0 A2

!
with non-void A1 and A2) if and only if the graph G is connected.

A real matrix A can always be (uniquely) written as A = A+ + A−, where A+ contains
the positive entries of A, having zeros elsewhere, and A− contains all negative entries of A,
having zeros elsewhere. Let us call A+ (respectively, A−) the positive (respectively,negative)
part of A. We have then:

Theorem 5. Suppose A is a real symmetric positive semideÞnite n×n matrix with rank n−1
and such that Ae = 0 (e as above). Then the negative part of A is irreducible. Conversely, if
C is a nonpositive irreducible symmetric n× n matrix with zero diagonal entries, then there
exists a real symmetric positive semideÞnite matrix A with rank n− 1, such that its negative
part is C.

This theorem implies the following:

Theorem 6. ([2]) Let us color each edge AiAj of an n-simplex with vertices A1, . . . , An+1
by one of the following three colours:

red, if the opposite interior angle φij is acute;

blue, if the opposite interior angle φij is obtuse;

white, if the opposite interior angle φij is right.

Then, the set of red edges connects all the vertices of the simplex.

Conversely, if we color all edges of an n-simplex by three colors red, blue and white in such a
way that the red edges connect all vertices, then there exists such deformation of the simplex
that opposite red edges there are acute, opposite blue edges obtuse and opposite white edges
right interior angles.

This result shows that every n-simplex has at least n acute interior angles, it also enables
to deÞne right n-simplices which have exactly n acute interior angles and all the remaining³
n
2

´
interior angles right, etc.
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Let us conclude by expressing the opinion that the n-dimensional Euclidean geometry is a
beautiful Þeld for a matrix theorist or graph theorist for both testing results and Þnding
inspiration.
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Crossover Designs for Medical and
Pharmaceutical Studies

S. Hedayat and M. Yang

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, USA

Department of Statistics
University of Nebraska at Lincoln, USA

A typical crossover design for testing v treatments using n subjects in p periods consists of
selecting n sequences out of all possible vp sequences (repetition of sequences are allowed)
and assigning one p-sequence of treatments to each subject under the study. Thus at the
end of the study each subject provides p observations if there is no drop-outs in the study.
Each such design can be represented by a p by n array with columns as p-sequences. Which
n sequences should be selected depends on the statistical model for the data and the goal of
the study. In this talk we tell the audience what has been done and what is needed to be
done. There are many exciting mathematical problems which need solutions.
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Spectral Graph Theory and the Inverse
Eigenvalue Problem of a Graph

Leslie Hogben

Department of Mathematics
Iowa State University, U.S.A.

The pattern of nonzero entries of a real symmetric matrix A can be described by a graph,
denoted G(A). If G is a graph and AG is the adjacency matrix of G, then G(AG) = G, but
many other matrices are also described by the graph G. Given a graph G, the problem of
characterizing the possible spectra of A such that G(A) = G has been referred to as the
Inverse Eigenvalue Problem of a Graph (IEPG). It is a very hard problem and is far from
solved, but signiÞcant progress has been made recently for trees.

Spectral graph theory is the study of the spectra of certain matrices deÞned from the graph,
including the adjacency matrix. This Þeld is better developed and a number of results have
been obtained describing the spectra of adjacency matrices. Clearly any result obtained for
IEPG applies to the adjacency matrix of the graph, but (especially in the case of trees) it is
possible to extend some results from spectral graph theory to the IEPG.

This talk will survey recent results on IEPG, exploit the connections between these problems,
and discuss avenues for future research.

Patterns of Commutativity

Charles Johnson

Department of Mathematics
College of William and Mary, Williamsburg, U.S.A.

Two n-by-n matrices A and B commute if AB = BA. Two n-by-n (sign) patterns commute
if they allow a commuting pair of matrices. We give a brief introduction to techniques for
dealing with the problem of determining if two (sign) patterns commute and then discuss
two recent major results in this area, dealing with commutativity with the full pattern and
the all plus sign pattern. Other results will be discussed.
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On Minimum Ranks of Sign Pattern Matrices

Zhongshan Li

Department of Mathematics and Statistics
Georgia State University, U.S.A.

A sign pattern (matrix) is a matrix whose entries are from the set {+,−, 0}. By introducing
the notions of weakly dependent sign pattern vectors and strongly independent sign pattern
vectors, a new characterization of L-matrices is obtained. A nonnegative sign pattern matrix
can also be viewed as a Boolean matrix, by replacing each + entry with 1. For a nonnegative
sign pattern, some interesting connections between the minimum rank and the Boolean
row (or column) rank are established. Various bounds for the minimum ranks of tree sign
patterns are presented. Some other results on the minimum ranks of sign pattern matrices
are surveyed and a number of open problems on the minimum ranks of sign patterns are
discussed.

The Minimum Rank of a Graph

Raphael Loewy

Department of Mathematics
Technion - Israel Institute of Technology, Israel

Let G = (V,E) be a simple, undirected graph on n vertices, and let S(G) denote the set of
all real, symmetric n × n matrices whose graph is G. Thus, for A ∈ S(G) aij 6= 0 if and
only if ij ∈ E. There is no restriction on the main diagonal entries of A.
The minimum rank of G, mr(G), is the minimum rank of all matrices in S(G). It is known
that mr(G) = n− 1 if and only if G is a path. We consider graphs G with mr(G) = n− 2.
The analysis of graphs G with mr(G) = n− 2 depends on a family of graphs called 2-trees
and their subgraphs.

This talk is based on a joint work with C. R. Johnson and P. Smith.
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The Peripheral Spectrum of a Nonnegative
Matrix

Judith J. McDonald

Department of Mathematics
Washington State University, U.S.A.

From the Perron-Frobenius Theorem, we know that the peripheral spectrum of a nonnegative
irreducible matrix consists precisely of the spectral radius multiplied by a complete set of
roots of unity. Each of the corresponding Jordan blocks is therefore 1 × 1. In this talk,
we will look at necessary and sufficient conditions on the Jordan blocks associated with the
peripheral spectrum of a reducible nonnegative matrix.

Minimal Spectrally Arbitrary Sign Patterns

Dale Olesky

Department of Computer Science
University of Victoria, Victoria, B.C.

An n× n sign pattern A is spectrally arbitrary if, given any self-conjugate spectrum, there
exists a matrix realization of A with that spectrum. If the replacement of any nonzero
entry (or entries) of A by zero gives a sign pattern without this property, then A is a
minimal spectrally arbitrary sign pattern. For n ≥ 3, several families of n × n spectrally
arbitrary sign patterns are presented, and their minimal spectrally arbitrary subpatterns
are identiÞed. These are the Þrst known families of n× n minimal spectrally arbitrary sign
patterns. Furthermore, all such 3× 3 sign patterns are determined and it is proved that any
irreducible n×n spectrally arbitrary sign pattern must have at least 2n− 1 nonzero entries,
and it is conjectured that the minimum number of nonzero entries is 2n.

This is joint work with Thomas Britz, Judi McDonald and Pauline van den Driessche.
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Combinatorial ScientiÞc Computing and
Combinatorial Matrix Theory: The Synergy

Alex Pothen

Department of Computer Science
Old Dominion University, Norfolk VA, USA

Researchers who are working on combinatorial problems in scientiÞc computing have recently
organized as a research community under the banner of combinatorial scientiÞc computing
(CSC). There are signiÞcant opportunities for fruitful interaction between the CSC and
combinatorial matrix theory communities. I will point out a few of these research areas, and
then talk about graph coloring models for computing Jacobian and Hessian matrices when
solving nonlinear problems in optimization.

Ten variant graph coloring problems occur in this context depending on the computational
scenario. A uniÞed algorithmic approach is developed to solve the variant problems, and
new graph coloring formulations and algorithms are proposed for the problems.

This is joint work with Assefaw Gebremedhin (ODU), Fredrik Manne (Bergen, Norway).

Integral Regular Graphs with Structures

Wasin So

Department of Mathematics
San Jose State University, U.S.A.

The problem �Which graphs have integral spectra?� appears intractable. By restricting to
regular graphs, the problem becomes managable. Indeed, there are Þnitely many integral
connected r-regular graphs, for a given r. However, a complete description of them is difficult
due to a lack of structures. In this talk, several classes of integral regular graphs with
structures are discussed, and their characterizations are given. The study of integral graphs
is beautiful because it brings together graph theory, matrix theory, number theory, group
theory, and more.
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Ray Nonsingularity and Ray Determinants

Jeffrey Stuart

Department of Mathematics
PaciÞc Lutheran University, Tacoma, WA, U.S.A.

It is well known that a sign pattern is nonsingular if and only if the determinant of the
sign pattern is unambiguously signed. That is, if A is an n × n matrix with entries in
{−1, 0, 1}, and if Q(A) is the set of all n×n real matrices of the form A◦X where ◦ denotes
the Hadamard product and where X is entrywise positive, then every matrix in Q(A) is
invertible if and only if the determinant of every matrix in Q(A) has the same sign.

We investigate the analogous issue for ray pattern matrices. Let A be an n × n matrix
with entries in {z ∈ C : |x| = 1}∪ {0}. The ray pattern Q(A) is the set of all n×n complex
matrices of the form A ◦ X where X is entrywise positive. It is easy to show that if the
determinant of every matrix in Q(A) lies on the same open ray, then every matrix in Q(A)
is nonsingular. However, unlike the sign pattern case, it is possible that every matrix in a
ray pattern is nonsingular but the determinant of the pattern is ambiguous, forming a cone
of rays minus the origin. We construct a variety of ray patterns that have unambiguous ray
pattern determinants, and we present results on invertible ray patterns that have ambiguous
ray pattern determinants.

On Biclique Partitions and Related Matrices

Kevin Vander Meulen

Department of Mathematics
Redeemer University College, Ancaster ON, Canada

We review some results on the partitions of the edge set of a graph by bicliques (complete
bipartite subgraphs.) If b(G) is the minimum number of bicliques in a partition of the edge
set of G, it is well-known that b(G) ≥ h(G) where h(G) is maximum of the number of
positive and the number of negative eigenvalues of G. Characterizing the inertia of a rank
one perturbation of a Hermitian matrix allows us to determine sharp bounds on b(G) for
various graphs, especially joins of graphs. Further, we illustrate known and conjectured
values of b(µKn) brießy noting some of the connections to Hadamard matrices and other
combinatorial structures. Open problems on minimum biclique partitions will be presented.


