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I Use MiniBooNE as Example

be discussed in C (and some in A).
* MiniBooNE is looking for a small class of
events v —v_

I * This experiment has many of the problems to

* Background is about 1000 times signal.

* Some 300 candidates for feature variables
(FV). FV from reconstructed events.

* |f new class exists, determine two
parameters; if not set limits as functions of
these parameters.



Classification problem

* Divide data into several categories given a
number of feature variables with each event.

* Often used in particle physics with two
categories—signal and background.



Older Methods

* Artificial Neural Net (ANN)
* Decision Trees



Neural Network Structure

Combine the features in a
non-linear way to a
“hidden layer” and then i
to a “final layer”

Use a training set to find
the best w, to wjy

distinguish signal and
background

A one hidden layer feed-forward neural network architecture.



Decision Tree

Go through all feature
variables and find best
variable and value to split
events.

For each of the two subsets
repeat the process

Proceeding in this way a tree
is built.

Ending nodes are called
leaves.
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I Select Signal and Background
I Leaves

« Assume an equal weight of signal and
I background training events.

« Signal events on a background leaf or
background events on a signal leaf are
misclassified.



I One Criterion for “Best” Split

 Purity, P, is the fraction of the weight of a node
I due to signal events.

« Gini: Note that gini is O for all signal or all
background.

Gini=() W,)P(1-P)
=1

 The criterion is to minimize gini_left + gini_right
of the two children from a parent node



Criterion for Next Branch to Split

Cl’iterion — giniparent — giniright—child _ginileﬂ-child

 Pick the branch to maximize the change in gini.



Problems with Older Methods

* ANN is not stable in many available versions
i. If put variable in twice, answer often
changes
ii. If multiply one variable by two,
answer often changes
iii. If change order of variables, answer
often changes
* Decision trees are also unstable.
* GO ON TO NEWER METHODS






Boosting the Decision Tree

 Give the training events
misclassified under this
procedure a higher
weight.

 Continuing build
perhaps 1000 trees and
do a weighted average
of the results (1 if signal
leaf, -1 if background
leaf).

Weighted Sample

Weighted Sample

Weighted Sample

Tramning Sample

s




Many variants

Change Gini criterion

Several weight updating schemes

Change scoring

Don’t change weights, but many trees with
subsets of events (bagging, random forests)
For neural nets Bayesian neural nets

The basic point is to average over many
trees in some way.

Boosting can, in principle, be applied to many
classification schemes—ANN..., but most
use in physics from trees



I Good Reference

“The Elements of Statistical Learning. Data
Mining, Inference and Prediction. “ Springer
(2001).

I * T. Hastie, R. Tibshirani, and J. Friedman,



I Warning: Boost Use Different
I than in Many Statistics Articles

* 45 leaves (8 or less in many publications)
I * 1000 trees
* Slightly modified scoring
* Use several sets of boosting trees. Make a
cut with first set and then retrain on
remainder. (Cascade boosting) OR train with
several different backgrounds and then use
boosting scores from each as additional
feature variables for final training.



I Rule Fit

J. Friedman. Here each node of each tree
can be thought of as a rule to select events.
For 1000 trees with 45 leaves (89 nodes)
apiece, this is 89,000 rules.

* The score is taken as a linear sum of the
truth of the rules. An algorithm is used to
optimize the weights of each rule with a
regulator term to control the variations.

I * This is a variant of boosted decision trees of



Support Vector Machines

* |n the multidimensional space of the feature
variables, find the borders of signal and
background events. Use only the border
region.

* Similar in a sense to boosting, which also
gives the most weight to the hard to classify
events, which are the border events.



I Comparisons

* |tis hard to generalize here. ltis likely that
I the best method depends on the problem.

* Comparisons are not easy. The
comparisons must be made with each
method tuned. See for instance the note of
J. Conrad and F. Tegenfeldt hep-ph/0605106
and the subsequent e-mails between Conrad
and Haijun Yang.



Comparisons li

* In the comparisons we have made for mini-
BooNE and some data from Babar, boosted
decision trees worked as well as any method
tried.

* B.P. Roe, H.]J. Yang, J. Zhu, I. Stancu and G.
McGregor, Nucl. Inst. and Meth. A543 (2005)
577

* H.J. Yang, B.P. Roe and J. Zhu, Nucl. Inst.
and Meth. A555 (2005) 370-385



I Can Statisticians Help Here?

* Are there some useful graphical methods?

* There is a reluctance among some physicists
to use modern classification methods
because they are non-intuitive and because
physicists worry about accurately modeling
data in many dimensions. Are there

suggestions from statisticians on these
iIssues?

I * Are there different approaches to the data?



Number of Feature Variables

* In miniBooNE we would like to reduce from
300 to perhaps 150 feature variables
* a. Check if data distributions agree with
Monte Carlo for individual variables and
robustness vs small systematic changes in
model
* b. Make short runs and look at:
i. Feature variables used most often OR
ii. Feature variables giving biggest
change in Gini criterion OR
iii. Feature variables used first



Number of Feature Variables I

* To first approximation, equal results with
each method, but each has problems.
(Example: two variables looking at same
thing. Boost may randomly pick one or the
other, reducing use by factor of two.)

* Do statisticians have any suggestions
concerning selection of feature variables?



I Goodness of Fit

size by a factor of more than hundred.

* Even in this cut sample, 2/3 or more are
background events.

* For this cut sample: Take the boosting score
as one variable and event energy as a
second, do chi-square or log likelihood fit for
best values of the two parameters of interest
or, for upper limits of the size of the rare
process as a function of the two parameters.

I * First cut on boosting score to reduce sample



I Systematic Errors

parameter (e.g. Fraction of Cherenkov light)
to the effect on the reconstructed event.

* Use Monte Carlo

* Unisim—One run for each systematic varied
by one standard deviation. Compare c.v.

* Multisim—A number of MC runs, in each of
which all systematic parameters are varied
randomly. (See B. Roe technical note)

* Do statisticians have any suggestions here?

I * Not easy to relate an assumed error in a



I Chi-Square

errors. (D. Stump et al., Phys. Rev. D65,
014012.) Ignore Bayes vs frequentist.

* Take the chi-square with only statistical
errors and add a term for each systematic
using the multidimensional correlated normal
distribution assumed for the systematics

* N systematic parameters added, but,
effectively N bins added so number df same.

* Runs into problems if more syst. than bins.

I * Use of data to further estimate systematic



Log Likelihood Fits

* Effectively means using finer bins than can
with chi-square. -2InL approx chi-square fails
past 90% CL in one example of our binning.

* Use Monte Carlo. If the two output
parameters were really at the assumed
values, what is the likelihood of
InL(best) — InL(real val.) being at least as
large as observed. Hard to get to the 46

equivalent normal distribution level.
* Can statisticians suggest a better way?



I Finally

to work together to the benefit of both
groups.
* We can use all the help we can get!!

I * Physicists and statisticians are now starting






F(T) =g
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This corresponds to a network where the xy, the input layer, are combined with weights
Wik and offsets 0; to give a hidden layer h; = Q'(%' Ekwjkmk‘|‘9j)s and the h; then

combined in a similar manner to give an output layer y;. Sometimes there are several

hidden layers, defined in the obvious way by iterating the procedure given in the previous

equation. The hidden layer enables non-linear modeling of the input data.



1 1
Fi(T)=g ?zwz’:jg (Tzwjkmk -I-fi'j) + #;
_ k

T is a system parameter which scales the size of F}.

The weights w;; and w;; are the parameters to be fitted to the
data distributions and g(z) is the non-linear neuron activation

function. typically of the “sigmoid” form,

9(x) = 5[1 + tanh(x)] = (1 4+ ¢2)

e J




Comparison of Boosting and ANN

« Relative ratio here is ANN
bkrd kept/Boosting bkrd
kept. Greater than one
iImplies boosting wins!

* A. Alltypes of background
events. Red is 21 and black
IS 52 training var.

« B. Bkrd is pi0 events. Red is
22 and black is 52 training
variables
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Boosting Parameters Helative ratios for given signal efficiencies |

Algorithms T ( Nizaves. Werees) | 30% | 40% | 50% | 60% | 70% | =0% |
AdaBoost L5 (& 1000) 0.53 0.63 0.81 1.11 1.78 3.21
AdaBoost 0.5 (8,56000) 0.50 060 0.74 [.08 1.40 2.52
c-Bo0st 0.01 (& 1000) 040 | 065 | 0.7 | 0.03 | L4D | 244
c-Booat 0.01 (8,5000) 0.51 | 065 | 066 | 0.86 | L.17 | L.=2
e-LogitBoost 001 (&, 1000) 0.40 .55 0.74 1.0°7 1.58 2.95
e-LaogitHoost .01 (&, 5000) 0.52 .57 0.68 0.80 1.22 2.01
e-HingeBoost 0.01 (8,1000) .58 | 0.66 0.83 1.0 1.68 2 88
c-HingeBoost 0.01 (&,5000) .61 060 | 0.82 1.05 1458 [ 2.40
e-Laog it Boast 0.01 (45, 1000) .30 0.50 0.61 0.82 1.11 1.84
— cHingeBoost 0.01 (30,1000) 077 | 0.0 | 086 | D06 | L20 | L&
LogitBoost 1.0 (45,130} 0.41 056 | 0L73 | D08 [ 1.43 | 2.40
LogitBoost 0.1 (45,150} 044 | 052 | 062 | 082 1.23 | 2.00
Heal AdaBoost (45, DO ) 0.47 0.57 .60 0.82 1.10 1.60
Gentle AdaBoost (45, 1000 0.47 0.54 0.67 0.83 1.05 1.56

2l

Ol Forastsg

( <bCeCh, 10 )

.44

Adaboosted REF

0.81

1.04

Adanoost

0.5 (45, 1000)

0.78

.06




| Boosting

Parameters

Helative ratios for given signal efficiencies

Algorithms A6 { Nizaves. Nipees)
Adaboost .o (45,1000) R AL £ : :
AdaBoost 0.5 (45,1000) 0.38 0.50 0.62 0.78 1.0 1.63
AdaBoost 0.8 (45,1 000) 0.45 0.54 0.62 0.82 1.07 1.60
AdaBoost L0 (45, 1000) 048 0.55 0.67 0.81 1.07 1.60
AdaBoost 0.5 (8,1000) 0.53 .63 .81 1.11 1.78 3.21
AdaBoost 0.5 (20, 1000) 043 0.58 0.71 0.93 1.321 2.20
AdaBoost 0.5 (45,1000) 0.38 | 050 0.62 0.78 1.06 1.63
AdaBoost 0.5 ( 100,1000) 043 | 051 | 061 | 0.6 | LOD | L.45
E-B00st 0.005 (45,1000) 0.38 0.47 0.62 0.84 1.26 2.23
e-Boost 0.01 (45,1000) 0.41 0.50 0.60 0.80 1.14 1.87
e-Boost 0.02 {45,1000) 0.40 0.48 | 0.62 0.77 1.08 1.71
e-Boost 0.03 (45,1000) 0.38 0.48 0.58 0.75 1.03 .62
e-Boost 0.04 (45,1000) 0.40 0.50 0.60 0.75 1.02 1.57
c-Bo0st 0.05 (45,1000 040 | 047 | 060 | 0.9 | LO7 | Lol

Adaboost (b=0.5)

0.5 (45,1000)

.39

047

060

076

1.0

1.58

e-Boost (bh=0.5) 0.01 {45, 1000) .36 0.46 0.62 0.83 1.23 200
e-Boaat (h=0.5) 0.03 (45,1000 .38 0.45 0.58 0.76 1.0 1.65
e-Boost (b=0.5) 0.05 {45, 1000 0.37 0.44 0.58 0.74 1.03 1.58




Effects of Number of Leaves and
Number of Trees
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Smaller is better! R = ¢ X frac. sig/frac.
bkrd.
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Effect of Number of PID Variables
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AdaBoost Optimization

filr) =classifier, with values = 4a; or —a;, with a; a positive constant
Flr) = Z:;l filx). (sum over trees, )

Can show that AdaBoost minimizes the expectation value, E(e ¥ {I}) by a series of

Newton-like updates. Furthermore, the minimum value of E(e %" {I}J is

Flr) = %lu (%) ., which is % the log-odds of the probabilty that ¥ = 1, given
r. This minimization is closely related to maximizing the negative binomial log likelihood
(cross-enfropy). They can both be shown to have the same minimizer. Further, with y* 1
or 0, and p(x) = probability that 4" =1 given z, then with F(z) = %lnﬁ-{&% it can be

shown that e~¥F(r) = WP _ y-statistic,
V@) (1-pl2)



Can Convergence Speed be
Improved?

 Removing correlations between variables
nelps.

« Random Forest (using random fraction[1/2] of
training events per tree with replacement and
random fraction of PID variables per node (all
PID var. used for test here) WHEN combined
with boosting.

« Softening the step function scoring: y=(2*purity-
1); score = sign(y)*sqrt(|y|).



Performance of AdaBoost with Step
Function and Smooth Function

1.2
1.15 | AdaBoost, 45 leaves, eff=60%

* b=0 (step function - standard)
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AdaBoost Optimization

filr) =classifier, with values = 4a; or —a;, with a; a positive constant
Flr) = Z:;l filx). (sum over trees, )

Can show that AdaBoost minimizes the expectation value, E(e ¥ {I}) by a series of

Newton-like updates. Furthermore, the minimum value of E(e %" {I}J is

Flr) = %lu (%) ., which is % the log-odds of the probabilty that ¥ = 1, given
r. This minimization is closely related to maximizing the negative binomial log likelihood
(cross-enfropy). They can both be shown to have the same minimizer. Further, with y* 1
or 0, and p(x) = probability that 4" =1 given z, then with F(z) = %lnﬁ-{&% it can be

shown that e~¥F(r) = WP _ y-statistic,
V@) (1-pl2)
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* 12 meter diameter sphere

e Filled with 950,000 liters
(900 tons) of very pure
mineral oil

 Light tight inner
region with 1280
photomultiplier tubes

 Quter veto region wit

241 PMTs.

* Oscillation Search
Method:
Look for v, events
in a pure v, beam



Neutrino Beam

"Little Muon
Counter” {(LMC): to
understand K flux

FNAL . ‘;__f?;’ E;I_"“ 500m dirt
Booster e -y~ D“;r i
B.:‘ dT:;;g;t Region ? Detector
% : B v, Flux
8 GeV protons =10 '[r 3 B v, Flux
§= 0’
= Proton flux ~ 6E16 p/hr (goal  :
9E16 p/hr) £ 10°
¥ ~ 1 detected neutrino/minute m.
» L/E~1




40’ D tank, mineral oil, surrounded by about 1280
photomultipliers. Both Cher. and scintillation light.
Geometrical shape and timing distinguishes events

Stopping muon event




