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Multi-Agent Optimization

@ 0. Introduction
@ 1. Variational Analysis Tools
@ 2. Deterministic Problems
e foundations & computational schemes

@ 3. Stochastic Problems (Walras)
e foundations & computational schemes
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Il. Deterministic Models
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Economic Equilibirum: Walras Model

Classical Arrow-Debreu Model

Pure Exchange:

@ Economy £ = exchange of goods ¢ R"”

@ (economic) agents: i € Z, |Z| finite
consumption by agent i: x; € R"
endowment: e; € R", utility: u; : R" — [0, o),
survival set: X; = dom u; = {x; | ui(x;) > —oo}

@ exchange at market prices: p

@ j-budget constraint: (p, x;) < (p, /).
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Economic Equilibirum: Walras Model

Market Equilibrium

Agent-i problem:

find X;(p) € argmax {u;(x;) | (P, x;) < (p, &)}
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Economic Equilibirum: Walras Model

Market Equilibrium

Agent-i problem:

find X;(p) € argmax {u;(x;) | (P, x;) < (p, &)}

Market clearing:
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Economic Equilibirum: Walras Model

Market Equilibrium

Agent-i problem:

find X;(p) € argmax {u;(x;) | (P, x;) < (p, &)}

Market clearing:

Price simplex: p € A,

Xi(p), s(p) unchanged when p — ap,a > 0
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Economic Equilibirum: Walras Model

Market Equilibrium

Agent-i problem:

find X;(p) € argmax {u;(x;) | (P, x;) < (p, &)}

Market clearing:

Price simplex: p € A,
Xi(p), s(p) unchanged when p — ap,a >0
Price Equilibrium:

find p sothat s(p) > 0.
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Economic Equilibirum: Walras Model

Assumptions

@ u;:R" — [—o0, o) concave; not necessarily differentiable,
not strictly concave (in general)

implies X; convex, but not necessarily closed

u;j is increasing, but no monotonicity is assumed
insatiability: V x;, 3 x; such that u;(x;) > u;(x;).

free disposal: w.l.0.g. int Xj # ()

strict survivability: e; € int X; controversial, but . ..
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Economic Equilibirum: Walras Model

Basic Properties

Under (some of) these assumptions, p — X;(p) is a osc,
closed-, convex-valued mapping such that dom x; = A, and so
is p — s(p); |Z| finite. These mappings are continuous when

Proof. Define

#(x) = ui(x;) when (p,x;) < (p,ej),
P —oo  otherwise

and show that for o’ — pin A, f* hypo-converges to f°. Hence,
Limsup, X;(p') C Xi(p). o
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Stability Analysis

Simplified model

Assumption: Vp € A, there exists

Xi(p) = argmax {u;i(x;) | (p, x;) < (P, &)}

for example, strict concavity of u; and ‘truncation’. Let

Ri(p) := X;n {x | (p,x; — &;) <0}.

the set of feasible trades of agent i; X; closed.

For all i € Z, the mapping R;: A = R!] is closed-,
convex-valued and such that for all p € A, int R;(p) # 0.
Moreover, it's continuous relative to A.
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Stability Analysis

Set of feasible trades

Proof. R;is closed-, convex-valued: clear. ¢; € intX; —

intX; N {x|(p,xi—e) <0} #0,VpeA,
i.e., int Rj(p) # 0.
Ri osc on A: Limsup,_,5 Ai(p) C Ri(P)
p’ — pin A and x;/ — X then
(p”, X7 — i) — (b, Xi— &),
x7 € Ri(p") = X € Ri(p); X; closed.

Riisc on A: Liminf, .5 Ri(p) D R;(p) use
Inner semicontinuity from convexity(a) Theorem. O
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Stability Analysis

Inner semicontinuity from convexity

Recall:
Theorem

Consider a mapping S : R" = R™ and a point x € R".

(a) If S is convex-valued and int S(x) # (0, then a necessary
and sufficient condition for S to be isc relative to dom S at x is
that for all u € int S(X) there exists W € N (X, u) such that
W N (dom S x R™) C gph S; in particular, S is isc at X if and only
if (x, u) € int(gph S) for every u € int S(x).

(b) If S is graph-convex and x € int(dom S), then S is isc at X.

(c) If SisiscatXx, thensois T : x — con S(X).
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Stability Analysis

Perturbing the Economy

&V =A{(ut,e}),ie1} U :R" - RU{-}, vEN,
with u? converging continuously to u;:

{Xiy - Xi}VGN/ C X, U/I/(X;/) - Ui(Xi)'
Assumption: X — X;,  u; same properties as u;
Application: (stochastic case) u} = u; + (w”,-), w” — 0.
Continuous convergence = pointwise-convergence +
convergence on the boundary ‘consistent’ with
the pointwise convergence on intdom u;.
[Proof: relies on epi-convergence of convex functions.]
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Stability Analysis

Excess supply function

Theorem

The demand function p — x;j(p): A — R" and the excess
supply functions p — s(p) are continuous.
With e} € int Xy forall i € Z, for p, p” € A,

Xi(p) = argmax {u,-(x,-) ‘ X € R,-(p)},
X! (p") = argmax {u} (x;) | x € Ri(p")}.

and u? S u;. Then X} (p”) — X;(p) for any sequence p” — p in
A; this means that X} < X; relative to A.

Proof. Hypo-convergence of

V(X)) = uy(x); when (p”,x; —e/) <0
" |0 otherwise,
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Stability Analysis

The Walrasian

An equilibrium price p solves  (s(p) set-valued)
S(p)>0 where S:A=R" with S(p)=s(p)—R;

Walrasian: W : A x A — R where

W(p,q) = sup{(q.s) | s € S(p)}
eVgeA: W(,q)isusc,
eVpeA: W(p,-)isconvex,
evVgeA: W(q,q)>0.
W is Ky Fan function on a product of compact sets.
— exists p maxinf point (equilibirum).
follows pattern in ‘Applied Nonlinear Analysis’ Aubin/Ekeland
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Stability Analysis

Approximating Economies

{gv = {(u,e),ic I}} & ={(u, &) ieT}

Suppose X’ — X; foralli € Z, &/ — e;, u¥ s u;. Then, & and
& have at least one equilibrium price p* orp in A. {p"},ay
always has a cluster point and any such cluster point is a
market equilibrium price for £.

Proof. Construct the Walrasians W" and show that they
lop-converge ancillary tight to W. O
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Stability Analysis

An example; Mass-Colell et al

x11 — (1/8)x5°, 0on[0.3,00)?,
U1(X11,X21)5={ - (1780 : )

—0 otherwise,
X0 — (1/8)x2, on [0.3,00)2,
Uo(X12, X22) 1= {_OO b otherwise

x;; amount of good / consumed by the agent /.
X1 =Xz =[0.3,00) x [0.3,0),
e =(2,r),e=(r,2), r=28°_21/9,
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Stability Analysis

Equilibirum points and perturbations

Xo1 = (P2/P1) "% x11 = 24 (r — (p2/P1)""/®)p2/ Py
x12 = (p1/P2) "%, xe2 =2+ (r — (P1/p2) " /°)p1 /2.
So, from ‘supply equals demand’ applied to the second good,
(P2/p1) ™"+ 2+ (r—(p1/p2) "V O)p1 /P2 =2+ .

with solutions py/p. = 0.5,1,2 = 3 equilibrium points.
Perturbations: linear and scaling

X1 — (1/8)x58 + x on [0.3, x)?,
case 1: U1V(X11’X21)1:{ 11— (1/ )21 + Xx11/v [ )

o otherwise,
o xi1 = (1/8)53(1+1/v) on[0.3,)?,
case 2:  u{(Xx11,X21) == {oo “ otherwise
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Stability Analysis

Perturbations: » = 10, 100, 1000
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A Numerical Procedure

Augmented Walrasian

Aim: p maxinf of W ~ (p, g) saddle point of W, = W(,-,r)
augmenting function: o : R” — R, convex
ming =0, argmino = {0}

augmented Walrasian: W, : A x A x (0,00) — R,
W(p,q,r) = supyep {W(p,y) + ro(y) - (q.¥)}
= inf,qgn {W(p,q — 2) — ro*(r~'z)}
with o = || - |,

W:(p, q) = inf, { W(p, z) ‘ z €B(q, r)}
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A Numerical Procedure

from Variational Analysis

e W,uscinp
e W, convex, Isc in (g,r), ‘decreasing’in r
@ maxinf and saddle points:

sup( inf W(p, q)) = sup< inf W, (p, q))
pEA NgeA peEA NqeA,r>0

= inf (supWr(p,q))

geA,r>0 N peA

@ W, lop-converge ancillary tight to W as r /o
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A Numerical Procedure

lterations

at iteration k + 1: (p*, g*) and scalar r, ¢ given

qk“‘1 = argmin {min {(Z, S(,Ok)> !Z € B(q, rc+1)
geA z
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A Numerical Procedure

lterations

at iteration k + 1: (p*, g*) and scalar r, ¢ given

qk“‘1 = argmin {min {(Z, S(,Ok)> !Z € B(q, rc+1)
geA z

i.e., minimizing a linear form on a, say /~— ball
reduces to finding the smallest element of s(p*)
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A Numerical Procedure

lterations

at iteration k + 1: (p*, g*) and scalar r, ¢ given

qur1 = argmin [min {(Z, S(pk)) !Z € B(q, rk+1)}
geA z

i.e., minimizing a linear form on a, say /~— ball
reduces to finding the smallest element of s(p*)
k+1

Pt = argmax [min |(z,s(p)) |z € B(q
PEA z

ke ) rk+1 )]
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A Numerical Procedure

lterations

at iteration k + 1: (p*, g*) and scalar r, ¢ given

qur1 = argmin [min {(Z, S(pk)) !Z € B(q, rk+1)}
geA z

i.e., minimizing a linear form on a, say /~— ball
reduces to finding the smallest element of s(p*)

Pt = argmax [min |(z,s(p))| z € B(qk+17rk+1)]
peA z

as ry /oo, pX — p equilibrium point
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A Numerical Procedure

Test Cases

@ Cobb-Douglas utility functions

n
ui(X) = ’YiH X" with Z/  Bi=1,01=0

@ budget constraints

n < n
X; e
=1 PiXip < 1 piej

@ demand
_ n
Xy = (Bu/pr) ( /:1 P/ei/) ,I=1,...,n

@ experiments: 10 agents, 150 goods (blink!),
parallelization?
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