MULTI-AGENT OPTIMIZATION (3)

Roger J-B Wets

Mathematics, University of California, Davis

Banff IRS - May 2007

Collaborators & Contributors

- * Alejandro Jofré, Universidad de Chile
- * Adib Bagh & Sergio Lucero, University California, Davis
- Hedy Attouch, Université de Montpellier
- Ruben López, Universidad Catolica de Conception

Multi-Agent Optimization

- 0. Introduction
- 1. Variational Analysis Tools
- 2. Deterministic Problems
 - foundations & computational schemes
- 3. Stochastic Problems (Walras)
 - foundations & computational schemes

conomic Equilibirum: Walras Model Stability Analysis A Numerical Procedure

II. Deterministic Models

Outline

- Economic Equilibirum: Walras Model
- Stability Analysis
- 3 A Numerical Procedure

Outline

- 1 Economic Equilibirum: Walras Model
- Stability Analysis
- A Numerical Procedure

Outline

- Economic Equilibirum: Walras Model
- Stability Analysis
- A Numerical Procedure

Classical Arrow-Debreu Model

Pure Exchange:

- Economy \mathcal{E} = exchange of goods $\in \mathbb{R}^n$
- (economic) agents: $i \in \mathcal{I}$, $|\mathcal{I}|$ finite consumption by agent i: $x_i \in \mathbb{R}^n$ endowment: $e_i \in \mathbb{R}^n$, utility: $u_i : \mathbb{R}^n \to [-\infty, \infty)$, survival set: $X_i = \text{dom } u_i = \{x_i \mid u_i(x_i) > -\infty\}$
- exchange at market prices: p
- *i*-budget constraint: $\langle p, x_i \rangle \leq \langle p, e_i \rangle$.

Agent-i problem:

find
$$\bar{x}_i(p) \in \operatorname{argmax} \{u_i(x_i) \mid \langle p, x_i \rangle \leq \langle p, e_i \rangle \}$$

Market clearing

$$s(p) = \sum_{i \in \mathcal{I}} e_i - \sum_{i \in \mathcal{I}} \bar{x}_i(p) \ge 0.$$

Price simplex: $p \in \Delta$,

$$\bar{x}_i(p), s(p)$$
 unchanged when $p \to \alpha p, \alpha > 0$

Price Equilibrium

find
$$\bar{p}$$
 so that $s(\bar{p}) \geq 0$

Agent-i problem:

find
$$\bar{x}_i(p) \in \operatorname{argmax} \{u_i(x_i) \mid \langle p, x_i \rangle \leq \langle p, e_i \rangle \}$$

Market clearing:

$$s(\rho) = \sum\nolimits_{i \in \mathcal{I}} e_i - \sum\nolimits_{i \in \mathcal{I}} \bar{x}_i(\rho) \geq 0.$$

Price simplex: $p \in \Delta$

$$\bar{x}_i(p), s(p)$$
 unchanged when $p \to \alpha p, \alpha > 0$

Price Equilibrium

find
$$\bar{p}$$
 so that $s(\bar{p}) \geq 0$

Agent-i problem:

find
$$\bar{x}_i(p) \in \operatorname{argmax} \{u_i(x_i) \mid \langle p, x_i \rangle \leq \langle p, e_i \rangle \}$$

Market clearing:

$$s(\rho) = \sum\nolimits_{i \in \mathcal{I}} e_i - \sum\nolimits_{i \in \mathcal{I}} \bar{x}_i(\rho) \geq 0.$$

Price simplex: $p \in \Delta$,

$$\bar{x}_i(p), s(p)$$
 unchanged when $p \to \alpha p, \alpha > 0$

Price Equilibrium

find
$$\bar{p}$$
 so that $s(\bar{p}) \geq 0$

Agent-i problem:

find
$$\bar{x}_i(p) \in \operatorname{argmax} \{u_i(x_i) \mid \langle p, x_i \rangle \leq \langle p, e_i \rangle \}$$

Market clearing:

$$s(\rho) = \sum\nolimits_{i \in \mathcal{I}} e_i - \sum\nolimits_{i \in \mathcal{I}} \bar{x}_i(\rho) \geq 0.$$

Price simplex: $p \in \Delta$,

$$\bar{x}_i(p), s(p)$$
 unchanged when $p \to \alpha p, \alpha > 0$

Price Equilibrium:

find
$$\bar{p}$$
 so that $s(\bar{p}) \geq 0$.

Assumptions

- $u_i: \mathbb{R}^n \to [-\infty, \infty)$ concave; not necessarily differentiable, not strictly concave (in general)
- implies X_i convex, but not necessarily closed
- *u_i* is increasing, but no monotonicity is assumed
- insatiability: $\forall x_i, \exists x_i' \text{ such that } u_i(x_i') > u_i(x_i).$
- free disposal: w.l.o.g. int $X_i \neq \emptyset$
- strict survivability: $e_i \in \text{int } X_i$ controversial, but . . .

Basic Properties

Theorem

Under (some of) these assumptions, $p \mapsto \bar{x}_i(p)$ is a osc, closed-, convex-valued mapping such that $\dim \bar{x}_i = \Delta$, and so is $p \mapsto s(p)$; $|\mathcal{I}|$ finite. These mappings are continuous when

Proof. Define

$$f_i^p(x_i) = \begin{cases} u_i(x_i) & \text{when } \langle p, x_i \rangle \leq \langle p, e_i \rangle, \\ -\infty & \text{otherwise} \end{cases}$$

and show that for $p' \to p$ in Δ , $f_i^{p'}$ hypo-converges to f_i^p . Hence, Limsup, $\bar{x}_i(p') \subset \bar{x}_i(p)$.

Simplified model

Assumption: $\forall p \in \Delta$, there exists

$$\bar{x}_i(p) = \operatorname{argmax} \{ u_i(x_i) \mid \langle p, x_i \rangle \leq \langle p, e_i \rangle \}$$

for example, strict concavity of u_i and 'truncation'. Let

$$R_i(p) := X_i \cap \{x \mid \langle p, x_i - e_i \rangle \leq 0\}.$$

the set of *feasible trades* of agent i; X_i closed.

Theorem

For all $i \in \mathcal{I}$, the mapping $R_i : \Delta \Rightarrow \mathbb{R}^n_+$ is closed-, convex-valued and such that for all $p \in \Delta$, int $R_i(p) \neq \emptyset$. Moreover, it's continuous relative to Δ .

Set of feasible trades

Proof. R_i is closed-, convex-valued: clear. $e_i \in \text{int } X_i \implies$

$$\operatorname{int} X_i \cap \big\{x\,\big|\, \langle \boldsymbol{p}, x_i - \boldsymbol{e}_i \rangle < 0\big\} \neq \emptyset, \forall\, \boldsymbol{p} \in \Delta,$$

i.e., int $R_i(p) \neq \emptyset$.

 $\underline{R_i \text{ osc on } \Delta}$: Limsup $_{p \to \bar{p}} R_i(p) \subset R_i(\bar{p})$ $p^{\nu} \to \bar{p} \text{ in } \Delta \text{ and } x_i^{\nu} \to \bar{x} \text{ then}$

$$\langle p^{\nu}, \chi_{i}^{\nu} - e_{i} \rangle \rightarrow \langle \bar{p}, \bar{x}_{i} - e_{i} \rangle,$$

$$x_i^{\nu} \in R_i(p^{\nu}) \implies \bar{x}_i \in R_i(\bar{p}); X_i \text{ closed.}$$

 R_i isc on Δ: Liminf_{$p \to \bar{p}$} $R_i(p) \supset R_i(\bar{p})$ use Inner semicontinuity from convexity(a) Theorem.

Inner semicontinuity from convexity

Recall:

Theorem

Consider a mapping $S : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ and a point $\bar{x} \in \mathbb{R}^n$.

- (a) If S is convex-valued and int $S(\bar{x}) \neq \emptyset$, then a necessary and sufficient condition for S to be isc relative to dom S at \bar{x} is that for all $u \in \text{int } S(\bar{x})$ there exists $W \in \mathcal{N}(\bar{x}, u)$ such that $W \cap (\text{dom } S \times \mathbb{R}^m) \subset \text{gph } S$; in particular, S is isc at \bar{x} if and only if $(\bar{x}, u) \in \text{int}(\text{gph } S)$ for every $u \in \text{int } S(\bar{x})$.
 - (b) If S is graph-convex and $\bar{x} \in \text{int}(\text{dom } S)$, then S is isc at \bar{x} .
 - (c) If S is isc at \bar{x} , then so is $T: x \mapsto \cos S(x)$.

Perturbing the Economy

$$\mathcal{E}^{\nu} = \{(u_i^{\nu}, e_i^{\nu}), i \in \mathcal{I}\} \qquad u_i^{\nu} : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty\}, \ \nu \in \mathbb{N},$$

with u_i^{ν} converging *continuously* to u_i :

$$\{x_i^{\nu} \to x_i\}_{\nu \in \mathbb{N}} \subset X_i, \quad u_i^{\nu}(x_i^{\nu}) \to u_i(x_i).$$

Assumption: $X_i^{\nu} \rightarrow X_i$, u_i same properties as u_i

Application: (stochastic case) $u_i^{\nu} = u_i + \langle w^{\nu}, \cdot \rangle$, $w^{\nu} \to 0$.

Continuous convergence = pointwise-convergence + convergence on the boundary 'consistent' with the pointwise convergence on $\inf \operatorname{dom} u_i$.

[Proof: relies on epi-convergence of convex functions.]

Excess supply function

Theorem

The demand function $p \mapsto \bar{x}_i(p) \colon \Delta \to \mathbb{R}^n$ and the excess supply functions $p \mapsto s(p)$ are continuous. With $e_i^{\nu} \in \operatorname{int} X_i^{\nu}$ for all $i \in \mathcal{I}$, for $p, p^{\nu} \in \Delta$,

$$ar{x}_i(p) = \operatorname{argmax} \left\{ u_i(x_i) \mid x \in R_i(p) \right\}, \\ ar{x}_i^{\nu}(p^{\nu}) = \operatorname{argmax} \left\{ u_i^{\nu}(x_i) \mid x \in R_i(p^{\nu}) \right\}.$$

and $u_i^{\nu} \xrightarrow{c} u_i$. Then $\bar{x}_i^{\nu}(p^{\nu}) \to \bar{x}_i(p)$ for any sequence $p^{\nu} \to p$ in Δ ; this means that $\bar{x}_i^{\nu} \xrightarrow{c} \bar{x}_i$ relative to Δ .

Proof. Hypo-convergence of

$$v_i^{\nu}(x_i) = \begin{cases} u_i^{\nu}(x)_i & \text{when } \langle p^{\nu}, x_i - e_i^{\nu} \rangle \leq 0 \\ -\infty & \text{otherwise}, \end{cases}$$

The Walrasian

An equilibrium price \bar{p} solves (s(p) set-valued)

$$S(p) \ni 0$$
 where $S: \Delta \Rightarrow \mathbb{R}^n$ with $S(p) = s(p) - \mathbb{R}^n_+$;

Walrasian: $W: \Delta \times \Delta \rightarrow IR$ where

$$W(p,q) = \sup\{\langle q,s\rangle \mid s \in S(p)\}$$

- $\forall q \in \Delta : W(\cdot, q)$ is usc,
- $\forall p \in \Delta$: $W(p, \cdot)$ is convex,
- $\forall q \in \Delta : W(q,q) \geq 0.$

W is Ky Fan function on a product of compact sets.

 \implies exists \bar{p} maxinf point (equilibirum).

follows pattern in 'Applied Nonlinear Analysis' Aubin/Ekeland

Approximating Economies

$$\left\{\mathcal{E}^{\nu} = \{(u_i^{\nu}, e_i^{\nu}), i \in \mathcal{I}\}\right\} \ \rightarrow \mathcal{E} = \{(u_i, e_i), i \in \mathcal{I}\}$$

Theorem

Suppose $X_i^{\nu} \to X_i$ for all $i \in \mathcal{I}$, $e_i^{\nu} \to e_i$, $u_i^{\nu} \xrightarrow{h} u_i$. Then, \mathcal{E}^{ν} and \mathcal{E} have at least one equilibrium price \bar{p}^{ν} or \bar{p} in Δ . $\{\bar{p}^{\nu}\}_{\nu \in \mathbb{N}}$ always has a cluster point and any such cluster point is a market equilibrium price for \mathcal{E} .

Proof. Construct the Walrasians W^{ν} and show that they lop-converge ancillary tight to W.

An example; Mass-Colell et al

$$u_1(x_{11}, x_{21}) := \begin{cases} x_{11} - (1/8)x_{21}^{-8}, & \text{on } [0.3, \infty)^2, \\ -\infty & \text{otherwise,} \end{cases}$$

$$u_2(x_{12}, x_{22}) := \begin{cases} x_{22} - (1/8)x_{12}^{-8}, & \text{on } [0.3, \infty)^2, \\ -\infty & \text{otherwise,} \end{cases}$$

 x_{li} amount of good *l* consumed by the agent *i*.

$$X_1 = X_2 = [0.3, \infty) \times [0.3, \infty),$$

 $e_1 = (2, r), e_2 = (r, 2), r = 2^{8/9} - 2^{1/9}.$

Equilibirum points and perturbations

$$x_{21} = (p_2/p_1)^{-1/9}, x_{11} = 2 + (r - (p_2/p_1)^{-1/9})p_2/p_1$$

 $x_{12} = (p_1/p_2)^{-1/9}, x_{22} = 2 + (r - (p_1/p_2)^{-1/9})p_1/p_2.$

So, from 'supply equals demand' applied to the second good,

$$(p_2/p_1)^{-1/9} + 2 + (r - (p_1/p_2)^{-1/9})p_1/p_2 = 2 + r.$$

with solutions $p_1/p_2 = 0.5, 1, 2 \implies 3$ equilibrium points. Perturbations: linear and scaling

case 1:
$$u_1^{\nu}(x_{11}, x_{21}) := \begin{cases} x_{11} - (1/8)x_{21}^{-8} + x_{11}/\nu & \text{on } [0.3, \infty)^2, \\ -\infty & \text{otherwise,} \end{cases}$$
case 2: $u_1^{\nu}(x_{11}, x_{21}) := \begin{cases} x_{11} - (1/8)x_{21}^{-8}(1+1/\nu) & \text{on } [0.3, \infty)^2, \\ -\infty & \text{otherwise,} \end{cases}$

Perturbations: $\nu = 10, 100, 1000$

Augmented Walrasian

Aim:
$$\bar{p}$$
 maxinf of $W \approx (\bar{p}, \bar{q})$ saddle point of $\tilde{W}_r = \tilde{W}(\cdot, \cdot, r)$ augmenting function: $\sigma: \mathbb{R}^n \to \mathbb{R}$, convex $\min \sigma = 0$, $\operatorname{argmin} \sigma = \{0\}$ augmented Walrasian: $\tilde{W}_r: \Delta \times \Delta \times (0, \infty) \to \mathbb{R}$,
$$\tilde{W}(p, q, r) = \sup_{y \in \Delta} \left\{ W(p, y) + r\sigma(y) - \langle q, y \rangle \right\} = \inf_{z \in \mathbb{R}^n} \left\{ W(p, q - z) - r\sigma^*(r^{-1}z) \right\}$$
 with $\sigma = \|\cdot\|$,
$$\tilde{W}_r(p, q) = \inf_z \left\{ W(p, z) \, \middle| \, z \in \mathbb{B}(q, r) \right\}$$

from Variational Analysis

- \tilde{W}_r usc in p
- \tilde{W}_r convex, lsc in (q, r), 'decreasing' in r
- maxinf and saddle points:

$$\begin{split} \sup_{p \in \Delta} \Big(\inf_{q \in \Delta} W(p,q) \Big) &= \sup_{p \in \Delta} \Big(\inf_{q \in \Delta, r > 0} \tilde{W}_r(p,q) \Big) \\ &= \inf_{q \in \Delta, r > 0} \Big(\sup_{p \in \Delta} \tilde{W}_r(p,q) \Big) \end{split}$$

• \tilde{W}_r lop-converge ancillary tight to W as $r \nearrow \infty$

at iteration k + 1: (p^k, q^k) and scalar r_{k+1} given

$$q^{k+1} = \operatorname*{argmin}_{q \in \Delta} \left[\, \min_{z} \left\{ \langle z, s(p^k) \rangle \, \middle| \, z \in I\!\!B(q, r_{k+1}) \right] \right.$$

i.e., minimizing a linear form on a, say $I^{\infty}-$ ball reduces to finding the smallest element of $s(p^k)$

$$p^{k+1} = \underset{p \in \Delta}{\operatorname{argmax}} \left[\min_{z} \left| \left\langle z, s(p) \right\rangle \right| z \in \mathcal{B}(q^{k+1}, r_{k+1}) \right]$$

as $r_k
eg \infty, \;\; p^k o ar p$ equilibrium point

at iteration k + 1: (p^k, q^k) and scalar r_{k+1} given

$$q^{k+1} = \operatorname*{argmin}_{q \in \Delta} \left[\min_{z} \left\{ \langle z, s(p^k) \rangle \mid z \in \mathcal{B}(q, r_{k+1}) \right] \right]$$

i.e., minimizing a linear form on a, say I^{∞} – ball reduces to finding the smallest element of $s(p^k)$

$$p^{k+1} = \underset{p \in \Delta}{\operatorname{argmax}} \left[\min_{z} \left| \left\langle z, s(p) \right\rangle \right| z \in \mathcal{B}(q^{k+1}, r_{k+1}) \right]$$

as $r_k
eg \infty, \;\; p^k
ightarrow ar p$ equilibrium point

at iteration k + 1: (p^k, q^k) and scalar r_{k+1} given

$$q^{k+1} = \operatorname*{argmin}_{q \in \Delta} \left[\min_{z} \left\{ \langle z, s(p^k) \rangle \mid z \in B(q, r_{k+1}) \right] \right]$$

i.e., minimizing a linear form on a, say I^{∞} – ball reduces to finding the smallest element of $s(p^k)$

$$p^{k+1} = \underset{p \in \Delta}{\operatorname{argmax}} \left[\min_{z} \, \left| \, \langle z, s(p) \rangle \, \right| z \in B(q^{k+1}, r_{k+1}) \right]$$

as $r_k
eg \infty, \;\; p^k
ightarrow ar p$ equilibrium point

at iteration k + 1: (p^k, q^k) and scalar r_{k+1} given

$$q^{k+1} = \operatorname*{argmin}_{q \in \Delta} \left[\min_{z} \left\{ \langle z, s(p^k) \rangle \mid z \in \mathcal{B}(q, r_{k+1}) \right] \right]$$

i.e., minimizing a linear form on a, say I^{∞} – ball reduces to finding the smallest element of $s(p^k)$

$$p^{k+1} = \underset{p \in \Delta}{\operatorname{argmax}} \left[\min_{z} \, \left| \, \langle z, s(p) \rangle \, \right| z \in B(q^{k+1}, r_{k+1}) \right]$$

as $r_k \nearrow \infty$, $p^k \to \bar{p}$ equilibrium point

Test Cases

Cobb-Douglas utility functions

$$u_i(x_i) = \gamma_i \prod_{l=1}^n x_{il}^{\beta_{il}} \text{ with } \sum_{l=1}^n \beta_{il} = 1, \beta_{il} \ge 0$$

budget constraints

$$\sum\nolimits_{l=1}^{n} p_{l} x_{il} \leq \sum\nolimits_{l=1}^{n} p_{l} e_{il}$$

demand

$$\bar{\mathbf{x}}_{il} = (\beta_{il}/p_l) \left(\sum_{l=1}^n p_l \mathbf{e}_{il} \right), \ l = 1, \dots, n$$

experiments: 10 agents, 150 goods (blink!), parallelization?

