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Multi-Agent Optimization (6)

 III. Stochastic Models
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 Pure Exchange: Walras
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The Walrasian

 
W (p,q) = q, s(p) , W :! " !# !

p  equilibirum price     (Ky Fan Inequality)
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 Numerical Approaches

 Augmented Walrasian:
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Variational Inequality
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  Stochastic Equilibrium Model

      Pure Exchange model
      with Input/Output activities
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Agent-i problem-stochastic
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Stochastic program with recourse: 2-stage
Well-developed solution procedures
Well-developed “approximation theory”
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Simplest-classical assumptions
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Market Clearing
    Agents:  i !I,   | I| finite   "large"
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Here-&-Now vs. Wait-&-See

Basic Process: decision --> observation --> decision

Here-&-now problem!
    not all contingencies available at time 0
                    can’t depend on ξ!

Wait-&-see problem
    implicitly all contingencies available at time 0
    choose                           after observing x
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Fundamental Theorem
of Stochastic Optimization

A here-and-now problem can be “reduced” to a
wait-and-see problem by introducing the

appropriate ‘contingency’ costs
(price of nonanticipativity)
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Contingencies prices
        (nonanticipativity)

Here-&-now Explicit nonanti. constraints
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Progressive Hedging
Step 0.
Step 1. for all ξ:

Step 2.
 and return to Step 1,

Convergence:  add proximal term
                        , linear rate in
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Disintegration: agent’s problem
with

solved for each ξ separately
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Incomplete to ‘Complete’ Market
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THE WALRASIAN
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IV. Experimentation
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with PATH Solver (experimental)
 Economy: (5 goods)
 Skilled & unskilled workers
 Businesses: Basic goods & leisure
 Banker: bonds (riskless), 2 stocks

 2-stages,   280 scenarios, 2776 scenarios
 utilities: CES-functions (gen. Cobb-Douglas)
 Utility in stage 2 assigned to financial instruments
 only used for transfer in stage 1

 on laptop: ~4 min, ~14 min, but
         extremely parallelizable algorithm
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with PATH Solver (stochastic)
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