
1. Minimal Surfaces and General Relativity

The portions of Mathematical Relativity which were covered by the workshop in-
clude the study of the constraint equations, especially the study of black hole solu-
tions. In the initial value formulation of the Einstein equations, the initial data are
specified on a three dimensional manifold, and the data consists of a Riemannian
metric (initial position) and a symmetric (0,2) tensor (which will be the second fun-
damental form of the spacelike hypersurface in the evolved spacetime) which plays the
role of the initial velocity of the gravitational field. The Einstein equations impose
an underdetermined set of nonlinear partial differential equations on the initial data
called the constraint equations. This set of equations is entirely geometric in nature
and arises from the Gauss and Codazzi equations for a spacelike hypersurface in a
spacetime satisfying the Einstein equations. The content of the initial value problem
is that any initial data set which satisfies the constraint equations evolves under the
hyperbolic equations of motion to a local solution of the Einstein equations. Of course
there are many unsolved questions concerning the long time behavior, but these do
not fall under the topic of the workshop.

The minimal surface and mean curvature theory enters most directly in the Rie-
mannian geometry of the constraint equations. The notion of trapped surface is
defined in terms of mean curvature. When one has a trapped surface in the initial
data it follows from theorems of Penrose and Hawking that the resulting spacetime
will be singular, so such data is referred to as black hole initial data. It turns out that
in an asymptotically flat data set which contains a trapped surface, there is always an
outermost trapped surface which is often called an apparent horizon (or marginally
outer trapped surface). Such a surface is a stable minimal hypersurface in the spe-
cial case of initial data with zero initial velocity (often called the Riemannian case).
The lecture of Galloway considered the question of the possible topologies which can
occur for apparent horizons. He described a proof of the theorem (see [7], [8]) that in
any dimension an apparent horizon is Yamabe positive in the sense that the induced
metric can be conformally deformed to a metric of positive scalar curvature. This
theorem generalizes a theorem of Hawking to the higher dimensional case. In three
dimensions Hawking’s theorem is a key step in the proof of the classical black hole
uniqueness theorems. Galloway also described the recent work of Andersson/Metzger
[1] and Eichmair [6] which solve the existence problem for the apparent horizon equa-
tion. An important question in this connection is whether the singularities which are
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known to arise in volume minimizing hypersurfaces of dimension 7 or more can arise
generically in Einstein initial data.

Another important theorem which has been partially proven over the past decade is
the Penrose inequality. This is a remarkable extension of the Positive Mass Theorem
which provides a sharp lower bound for the mass when black holes are present. More
precisely, this lower bound is given in terms of the area of an apparent horizon,
and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose
inequality was first proven in three dimensions in 1997 by G. Huisken and T. Ilmanen
[9] for the case of a single black hole. In 1999, H. Bray [2] extended this result to
the general case of multiple black holes using a different technique. In his talk Dan
Lee described his recent extension (joint with H. Bray [3]) of the Riemannian Penrose
inequality to higher dimensions; precisely the inequality has been extended up to
dimension less than 8. An interesting feature of the proofs of the Penrose inequality is
that both proofs use weak solutions of evolution equations which are closely tied to the
theory of volume minimizing hypersurfaces. The Huisken/Ilmanen proof which works
only in the three dimensional case for a connected apparent horizon uses the 1/H-
flow while the Bray proof (which Bray and Lee have extended to higher dimensions)
works for apparent horizons with multiple connected components, and uses a novel
conformal flow of metric. The major outstanding problem in the area is the general
Penrose inequality; that is, the corresponding inequality for arbitrary asymptotically
flat initial data sets. The Riemannian Penrose inequality in dimensions 8 or more
is also open and the difficulty is related to the possibility of singularities in volume
minimizing hypersurfaces which may occur in this case.

The talk by Corvino described his work (see [4], [5]) on constructions of new solu-
tions of the constraint equations which can be obtained by localized gluing methods;
that is, gluing methods which produce smooth solutions which agree with the original
solutions outside the gluing region. Such constructions are possible for the constraint
equations because of its particular underdetermined structure. Corvino showed that
any solution of the vacuum constraint equations with appropriate asymptotics can be
deformed outside an arbitrarily large ball to a new solution which is identical with
a Kerr (Schwarzschild in the Riemannian case) solution. Corvino also described his
recent proof that the center of mass defined by Huisken and Yau [10] agrees with
that defined by Corvino [4]. The Huisken/Yau definition is associated with a special
foliation of the exterior region of the initial data by constant mean curvature spheres.
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2. Partial Differential Equations

Micah Warren from University of Washington spoke on “A priori estimates for
special Lagrangian equations”.

Abstract. We discuss recent a priori interior Hessian estimates for solutions of the
special Lagrangian equation, when the equation has phase at least a certain value,
or when the solution is convex. These equations include the sigma-2 equation in
dimension three. The gradient graph of any solution is a minimizing Lagrangian
surface. While Heinz showed in the 1950’s that similar estimates hold for the sigma-2
(Monge-Ampere) equation in dimension two, Pogorelov showed that such estimates
cannot hold for the sigma-3 (Monge-Ampere) equation in dimension three. This is
joint work with Yu Yuan, partly also with Jingyi Chen.

The fully nonlinear special Lagrangian equation

(2.1) F
(
D2u

)
=

n∑
i=1

arctan λi = Θ

where λi are the eigenvalues of the Hessian D2u, arises from the special Lagrangian
geometry of Lawson and Harvey. The gradient graph (x, Du (x)) of the potential u is
a Lagrangian submanifold in Rn×Rn. The Lagrangian graph is called special when the
phase, which is the argument of the complex number

(
1 +

√
−1λ1

)
· · ·

(
1 +

√
−1λn

)
,

is constant Θ; that is, u satisfies equation (2.1). A special Lagrangian graph is a
volume minimizing minimal submanifold in R2n.

In the 1950’s, Heinz derived a Hessian bound for the two dimensional Monge-
Ampère type equation, including (2.1) with n = 2. In the 1970’s Pogorelov con-
structed irregular solutions to σ3 (D2u) det(D2u) = 1 in dimension three, which were
generalized to σk equations with k ≥ 3 by Urbas. Hessian estimates for solutions
with certain strict convexity constraints to Monge-Ampère equations and σk equa-
tion with k ≥ 2 were obtained by Pogorelov and Chou-Wang respectively. Pointwise
Hessian estimates in terms of certain integrals of the Hessian for σk equations and for
special Lagrangian equation (1.1) with n = 3, Θ = π were produced by Urbas and
by Bao-Chen, respectively. Recently, for (2.1) Hessian estimates have been obtained:
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for convex solutions with a certain smallness assumption on the height in [4]; for a
sharper bound when n = 2 in [5]; when n = 3 and |Θ| ≥ π/2, including the equation
σ2 (D2u) = 1 in dimension three, in [6], [7]. More recently, Hessian estimates for
general convex solutions have been obtained in [1].

Open problems:
a) Whether one has Hessian control over the solutions to the special Lagrangian

equation (2.1) with general phases in dimension three and higher, including 4u =
det D2u corresponding to Θ = 0 and n = 3?

b) Derive a Hessian bound for the solutions to the quadratic Hessian equation
σ2 (D2u) = λ1λ2 + · · · = 1 in dimension four and higher.

Joel Spruck from Johns Hopkins University spoke on “A half-space theorem for
complete embedded cmc 1/2 surfaces in H2 × R ”

Abstract. The famous half-space theorem of Hoffman-Meeks says that a properly
immersed minimal surface in R3 that is contained in a half-space must be a plane.
We improve (in joint work with L. Hauswirth and H. Rosenberg) an analogous result
for a complete properly embedded cmc 1/2 surface in H2×R (possibly with compact
boundary).

Theorem 1. Let Σ be a complete properly embedded constant mean curvature 1
2

surface in H2 × R. Suppose Σ is asymptotic to a horocylinder C, and on one side of
C. If the mean curvature vector of Σ has the same direction as that of C at points of
Σ converging to C, then Σ is equal to C (or a subset of C if ∂Σ 6= ∅ ).

A strong motivation for the half space theorem is that it is used to prove the
following result.

Theorem 2. Let Σ be a complete immersed constant mean curvature 1
2

surface in

H2 × R. If Σ is transverse to the vertical Killing field Z = ∂
∂t

. Then Σ is an entire
vertical graph over H2.

Such entire vertical graphs are plentiful. In fact using Theorem 2 and a construction
of Fernandez-Mira, we have

Theorem 3. For each quadratic holomorphic differential on C or the unit disk, one
associates an entire H = 1/2 graph.

The proof of Theorem 1 is based on the study of “horizontal graphs” over horo-
cylinders, which satisfy the strange looking equation

(*) (g2 + g2
t )gxx − 2gxgtgxt + (1 + g2

x)gtt = −g(1 + g2
x) +

W 3

g2

Theorem 3 follows from the existence of catenoid-like solutions as in the proof of
the Hoffman-Meeks half-space theorem.

Theorem 4. Let U be the annulus U = BR2\BR1 with R2 ≥ 2R1. Then for ε > 0
sufficiently small (depending only on R1), there exist constant mean curvature H =
1/2 horizontal graphs g+ and g− satisfying (*) on U with Dirichlet boundary data
g± = 1± ε on ∂BR1 , g± = 1 on ∂BR2 . Moreover g± is unique and varies continuously
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with the parameters ε, R1, R2 and g± tends to 1± ε uniformly on compact subsets as
R2 tends to ∞.

Bo Guan from Ohio State University spoke on “Complete conformal metrics with
negative Ricci curvature on manifolds with boundary”

Abstract. Let (M̄n, g), n ≥ 3, be a compact smooth Riemannian manifold of
dimension n with smooth boundary ∂M , M = M̄ \ ∂M be the interior of M̄ , and let
Ricg denote the Ricci tensor of g. We are interested in the question of whether there
exists a complete metric g̃ on M with negative Ricci tensor in the conformal class of
g satisfying the equation:

(2.2) det(−Ricg̃) = 1.

More generally, let f be a smooth symmetric function defined in a open convex
symmetric cone Λ ⊂ Rn which contains Λ+

n = {λ ∈ Rn : λi > 0} satisfying certain
ellipticity structure conditions. Let Λ−[g] denote the collection of metrics g̃ on M in
the conformal class of g such that λ(Ricg̃) = (λ1, · · · , λn), the eigenvalues of g̃−1Ricg̃,
belongs to −Λ everywhere on M .

Problem1. Find a complete metric g̃ ∈ Λ−[g] on M with

(2.3) f(−λ(Ricg̃)) = 1 in M.

In this talk we present some recent results from joint work with Huaiyu Jian and
discuss open questions. Our result implies, in particular, that on any smooth domain
in R contained in a half-space there exists a complete conformally flat metric with
negative Ricci tensor satisfying equation (2.2).

Jaigyoung Choe from Korea Institute for Advanced Study spoke on “Capillary
surfaces in a convex cone”.

Abstract. Some capillary surfaces are known to be rigid, i.e., part of a sphere.
Here are two known examples: a disk type capillary surface in a ball, and a disk type
capillary surface with at most three edges in a domain bounded by planes and spheres.
We have found more examples as follows. Let C be a convex cone in Rn a hypersurface
in C which has constant higher-order mean curvature and is perpendicular to the
boundary of C. Then S is a spherical cap. We will prove this using the Reilly formula.

Moreover, let C be a polyhedral cone in R3 and S a capillary surface in C with
constant contact angle(not necessarily 90 degrees) and with at most 5 edges. Then S
is a spherical cap. This can be proved by using Poincare-Hopf’s theorem and Bonnet’s
parallel surface.

Finally Nitsche’s result about a minimal disk in a ball which is perpendicular to
the boundary sphere motivates the following problem: Let h be a harmonic function
on a ball whose boundary values are equal to their normal derivatives. Show that
they must be linear functions. We will prove this using Rellich’s identity.
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One of Choe’s posed problems on harmonic functions with equal boundary Dirichlet
and Neumann data was solved during a discussion in the workshop.

Pengfei Guan from McGill University spoke on “Isoperimetric inequality of quer-
massintegrals for starshaped domains”

Abstract. I will describe a recent joint work with Junfang Li. We give a simple
proof of the isoperimetric inequality for quermassintegrals of non-convex starshaped
domains. The proof is based on work of Gerhardt and Urbas for an expanding geo-
metric curvature flow of hypersurfaces of Rn+1 and the observation of a certain mono-
tonicity property of isoperimetric constants.
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3. Calibrated submanifolds

Spiro Karigiannis spoke on “Moduli spaces of calibrated cycles in G2 manifolds ”.
G2 manifolds [10] are a class of Ricci-flat manifolds with special holonomy, occurring

in 7 real dimensions. They are analogous to Calabi-Yau 3-folds in many respects, and
are of interest to physicists in M-theory and supergravity [1]. They admit two nat-
ural classes of calibrated submanifolds: the 3-dimensional associative submanifolds,
and the 4-dimensional coassociative submanifolds. These are both absolutely volume-
minimizing in their homology class. In joint work with Naichun Conan Leung [11], we
prove that these submanifolds, together with unitary connections on them satisfying
some special condition, are critical points of a naturally defined functional of Chern-
Simons type. Specifically, the pair of an associative submanifolds together with a flat
connection is such a critical point, as well as the pair of a coassociative submanifold
together with a connection for which the trace of the curvature form is self-dual. Ad-
ditionally, there is a special type of connection (called deformed Donaldson-Thomas
connections) on the ambient 7-manifold which can also be interpreted as a critical
point of the same functional.
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An interesting and important open problem is to study the stability of these critical
points. That is, are they non-degenerate, and if so, are they minima? This non-
degeneracy is likely related to the smoothness of the moduli space of such objects. For
example, it is known that the moduli space of coassociative submanifolds is smooth
and unobstructed, whereas the situation is much worse for associative submanifolds
[12]. They are in general obstructed and their infinitesimal deformations are the
kernel of a twisted Dirac operator. The deformation theory of Donaldson-Thomas
connections has not yet been analyzed.

Another important question that needs to be addressed is how the moduli of pairs
of submanifolds and connections as described above relates to the analogous situation
for Calabi-Yau 3-folds [3], [4]. If N is a Calabi-Yau 3-fold, and S1 is a circle, then the
product M = N ×S1 is a G2 manifold. Associative submanifolds include products of
S1 with a holomorphic curve in N , and coassociative submanifolds include products of
S1 with a special Lagrangian submanifold in N . The exact relationship between the
two geometries is non-trivial, however, because the G2 moduli involve a complicated
mixing of the complex and Kähler moduli of the Calabi-Yau 3-fold.

Marianty Ionel talked about “Constructions of special Lagrangian submanifolds”.
Abstract: Special Lagrangian submanifolds are a particular class of minimal sub-

manifolds, introduced by Harvey and Lawson in the wider context of calibrated ge-
ometries. In this talk, I will describe the cohomogeneity one special Lagrangian 3-folds
in both the deformed and the resolved conifolds. Our results give an explicit con-
struction of the families of SO(3) and T 2-invariant special Lagrangian submanifolds
in these conifolds and describe their asymptotic behavior. The families of special La-
grangian submanifolds in the two conifolds approach asymptotically the same special
Lagrangian cone. We will also describe a family of T 3-invariant coassociative 4-folds
in the total space of the spin bundle of S3, with the Bryant-Salamon G2-metric.

Some open problems: 1. By moding out by appropriateS1-actions on the spin
bundle of S3, one obtains the deformed and the resolved conifold. The relationship
between the family of T 3- invariant coassociative 4-folds and the T 2-invariant special
Lagrangian submanifolds constructed in the conifolds could be explored further using
these actions. 2. Construct some symmetric explicit Cayley submanifolds in the spin
bundle of S4 endowed with the Bryant-Salamon Spin(7)-metric.
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4. Geometric flows

Curvature estimates are significantly important for the geometric evolution equa-
tions, such as the Ricci flow equation, etc. Gang Tian spoke on “Curvature estimates
for Ricci flow in dimension 4”. The following curvature estimates along the Ricci flow
when the dimension of the manifold is 4 is stated and a proof is outlined.

Theorem. Suppose the Ricci flow equation

∂gij

∂t
= −2Rij

in M × [0, T ), and dim M = 4. Given K > 0, there exist ε, C = C(K) such that if∫
Br(x,t0)

|Rm|2 ≤ ε

and

|Ric(g0)| ≤ K,

then

sup
Br/2(x,t0)

|Rm|t ≤
C

t− t0

for t ∈ (t0, t0 + r2].
This theorem has a direct corollary as follows.
Corollary. Under the conditions∫

Br(x)

|Rm|2dg ≤ ε

and |Ric(g)| ≤ K, then Br/4(x) is diffeomorphic to U/Γ in C1,α sense, where U ⊂ R4

is an open subset and Γ ⊂ Iso(R4) is a finite group acting freely on R4.
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This result can be viewed as a generalization of a theorem by Cheeger-Tian in [3],
where the 4-manifolds are assumed to be Einstein.

G. Tian also proposed the following problem relevant to the the theorem:
Do all 4-manifolds with bounded Ricci curvature and finite Euler characteristic

have finite topological type?
By the theorem for any sequence of 4-manifolds with bounded Ricci curvature and

finite Euler characteristic, it will converge outside finitely many singularities. And if
one could understand the topology around the singularities, then one could answer
the above problems.

Yng-Ing Lee spoke on “Special solutions to Lagrangian mean curvature flow”
Abstract: In this talk, I will report on some special solutions to Lagrangian mean

curvature flow constructed by me and my collaborators. The first category is eternal
Brakke solutions. Recall that Brakke flow is a generalization of mean curvature
flow, which is defined for varifolds, and an eternal solution is a solution defined for
any t from negative infinity to infinity. Our solutions are (smooth) Lagrangian self-
shrinkers for t < 0, Lagrangian cones for t = 0, and Lagrangian self-expanders for
t > 0. Moreover, some of our solutions satisfy the additional property that every time
slice is Hamiltonian stationary. When n = 2, our solutions resolve Schoen-Wolfson
cones and can distinguish a C2,1 cone from other cones. In higher dimension, we find
Hamiltonian stationary cones which generalize Schoen-Wolfson cones, and eternal
Hamiltonian stationary Brakke solutions which resolve these cones.

I will also talk about two other types of solutions. One type is translating solutions
which include examples with arbitrarily small oscillation of the Lagrangian angle.
These examples will play an important role in developing regularity theory in the
Lagrangian mean curvature flow. Another type is other self-similar solutions. We have
self-expanders with arbitrarily small oscillation of the Lagrangian angle and which are
asymptotic to a pair of planes. Conversely, given any pair of Lagrangian planes with
sum of characteristic angles less than π/2, we can always find such self-expanders
asymptotic to this pair of planes. Examples of compact Lagrangian self-shrinkers are
also obtained.

Jiayu Li from ICTP spoke on “Symplectic surfaces in K-E surfaces”.
Abstract: In this talk I will review our recent results in symplectic translating

solitons and symplectic critical surfaces in K-E surfaces.
In a Kähler surface M , one can define the Kähler angle α of an oriented surface

Σ in M by ω|Σ = cos αdµΣ, where ω is the Kähler 2-form of M and dµΣ is the area
form of Σ in the induced metric. Σ is symplectic if cos α ≥ 0 on Σ. Li-Han considered
the critical points of the functional

∫
Σ

1/ cos αdµΣ in the space of symplectic surfaces.
They derived the Euler-Lagrange equation for this functional and showed that it is
an elliptic equation. Properties of this equation are then studied, for example, a
formula on the number of the complex points which is similar to that in the minimal
surface case . The gradient flow of this functional and evolution equations of various
geometric quantities along this flow are also considered. In particular, if the initial
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surface is symplectic and closed, then it remains so along the flow as long as the flow
exists.

For symplectic mean curvature flows, Li-Han show that sup |α| > π
4

|T |
|T |+1

, where α

is the Kähler angle of a symplectic translating soliton with max |A| = 1 and A is the
second fundamental form and T is the direction in which the surface translates.
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5. The classical theory of minimal surfaces

New developments in the area of the classical theory of minimal surfaces were
presented and discussed at the workshop - the topics included: new constructions
of minimal submanifolds in Euclidean space and in spheres, classification of minimal
surfaces, comparison between the second variation of area and energy for minimal
surfaces, curvature estimates, etc... For example, Meeks presented recent work with
Perez and Ros which settles the old question of classifying all properly embedded
genus zero minimal surfaces in R3. Several of the mealtime group conversations
revolved around discussions with Meeks on issues about and open questions on the
classical theory of minimal surfaces [6]. Below is a highlight of the workshop talks.

Leobardo Rosales from UBC spoke on “Minimal immersions with prescribed bound-
aries”. Recently L. Simon and N. Wickramasekera [8] introduced a PDE method for
producing examples of stable branched minimal immersions in R3. This method
produces q-valued functions u over the punctured unit disk in R2 so that either u
cannot be extended continuously across the origin, or G the graph of u is a C1,α

stable branched immersed minimal surface. The present work gives a more complete
description of these q-valued graphs G in case a discontinuity does occur, and as a
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result, we produce more examples of C1,α stable branched immersed minimal surfaces,
with a certain evenness symmetry.

Adrian Butscher of Stanford University spoke on “New constructions of submani-
folds of the sphere which are critical points of the volume functional”. If one searches
for k-dimensional submanifolds with critical k-dimensional volume in a Riemannian
manifold, then one is led towards elliptic partial differential equations involving the
mean curvature vector of the submanifold. This talk presented new constructions
([1], [2]) of volume-critical submanifolds of the sphere in two contexts: hypersurfaces
with constant mean curvature in spheres of any dimension; and Legendrian submani-
folds in spheres of odd dimension that are stationary under variations preserving the
contact structure. These are constructed by solving the associated elliptic PDE using
singular perturbation theory. The analytic and geometric similarities between these
two contexts was highlighted.

Mario Micallef of University of Warwick spoke on “Comparison between second
variation of area and second variation of energy of a minimal surface”. The conformal
parameterisation of a minimal surface is harmonic. Therefore, a minimal surface is
a critical point of both the energy functional and the area functional. This talk
described joint work [3] with N. Ejiri which compares the Morse index of a minimal
surface as a critical point of the area functional with its Morse index as a critical
point of the energy functional. The difference between these indices is at most the
real dimension of Teichmuller space. The methods for this comparison also allow
Micallef and Ejiri to obtain surprisingly good upper bounds on the index of minimal
surfaces of finite total curvature in Euclidean space of any dimension. They also bound
the index of a minimal surface in an arbitrary Riemannian manifold by the area and
genus of the surface, and the dimension and geometry of the ambient manifold.

Y.L. Xin of Fudan University spoke on “Curvature estimates for minimal subman-
ifolds of higher codimension”. Estimates of the Hessian of several smooth functions
defined on Grassmannian manifold were derived. Based on these, curvature estimates
for minimal submanifolds of higher codimension in Euclidean space were obtained,
via the Gauss map ([9]). Thus, Schoen-Simon-Yau’s results and Ecker-Huisken’s re-
sult for minimal hypersurfaces are generalized to higher codimension. In this way, the
results for Bernstein type theorems done by Hildebrandt-Jost-Widman and Jost-Xin
could be improved.

William Meeks of the University of Massachusetts, Amherst, spoke on “The classi-
fication of embedded minimal planar domains in R3” (joint work with Joaquin Perez
and Antonio Ros). Recently William Meeks, Joaquin Perez, and Antonio Ros [7]
have succeeded in classifying all properly embedded genus 0 minimal surfaces in R3.
Based on their previous results it remained to prove that the examples of infinite
topology are the examples discovered by Riemann in 1860, called the Riemann min-
imal examples. The proof of the uniqueness of the Riemann minimal examples is in
part related to the holomorphic integrability of the classical Shiffman function S(M)
which is a nonzero Jacobi function on a possible counterexample M . They relate the
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integrability to an evolution equation for the Gauss map of M which in turn can be
related to the integrability of the KdV equation on the complex plane with initial
Cauchy data. The proof of integrability depends on the theory of KdV hierarchy
and algebro-geometric potentials. In the end they prove that S(M) vanishes which
means that M is foliated by circles and lines in a family of parallel planes, which by
Riemann’s earlier results implies M is a Riemann minimal example. Some related
theoretical results were also discussed.

David Hoffman of Stanford University spoke on “Embedded Helicoidal minimal
surfaces in R3 and S2 × R”. In joint work [4] [5] with Brian White, they construct
embedded genus-one helicoids in R3 by variational means without recourse to the
Weierstrass representation or other function-theoretic methods. They are also able to
show that important geometric properties of the examples they construct are shared
by all other examples with sufficient symmetry. The talk described their construction
of examples of embedded helicoidal minimal surfaces in S2 × R of arbitrary genus.
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