
1

banff07.tex, 13 February 2007

Lieb-Robinson Bounds and Applications

to Quantum Information Theory

Bruno Nachtergaele (UC Davis)

based on joint work with

Robert Sims (UC Davis), Yoshiko Ogata (Tokyo U)

I Setup. Lieb-Robinson Bounds

I Application 1: Existence of the Dynamics

I Application 2: Propagation of Correlations

I Application 3: Exponential Clustering Theorem

I Application 4: The Lieb-Schultz-Mattis Theorem



2

Quantum Spin Systems
A quantum spin system consists of a finite or infinite number

of spins, labeled by x ∈ V . For finite V , the Hilbert space of

states is

HV =
⊗
x∈V

Cnx .

For the purpose of this talk you can just think of a collection

of qubits.

(But it could also be a physical system of interest for other

reasons: atomic magnetic moments in a material, or of specific

atoms embedded in a large molecule or deposited by STM on

a substrate, or an array of quantum dots.)
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For each spin, the observables are the complex n × n matrices:

Mn. For the whole system the algebra of observables is

AV =
⊗
x∈V

Mnx = B(HV ).

If X ⊂ V , we have AX ⊂ AV , by identifying A ∈ AX with

A⊗ 1l ∈ AV . For such A ∈ AV , we say that the support of A

is in X .

For infinite V , the algebra of observables is the completion of

the algebra of local observables given by

AV =
⋃

X⊂V

AX

where the union is over finite subsets X .
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Interactions
An interaction for a quantum spin system is a map Φ from the

set of finite subsets of V to AV such that Φ(X ) ∈ AX , and

Φ(X ) = Φ(X )∗, for all X ⊂ V , and, for finite V , the

Hamiltonian is

H =
∑
X⊂V

Φ(X ).

The Heisenberg dynamics, {τt}t∈R, defined by

τt(A) = e itHAe−itH , A ∈ AV .

For infinite V , one considers finite systems indexed by finite

subsets of V and then takes appropriate limits (assuming

suitable conditions on Φ).
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The Heisenberg Model
The first and most important example of a quantum spin

system.

Let V be the set of vertices of a graph with edges (xy) ∈ E .

H = −
∑

(xy)∈E

JxySx · Sy

Here S j
x = 1l⊗ · · · ⊗ 1l⊗ S j ⊗ · · · 1l, the jth spin matrix in the

nx -dimensional irrep of su(2), acting on the xth factor in the

tensor product. Jxy ∈ R are the coupling constants.

Heisenberg introduced this model in 1926 to describe

magnetism in solids. Since then, the Heisenberg model and

variants of it have come up in many different contexts.
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Quasi-Locality of Extended Systems
V is often called “the lattice” due to its origins in the crystal

lattice of magnetic atoms. V usually has a graph structure (a

set of edges (xy), x , y ∈ V ), but it doesn’t have to be a lattice.

Let d be a metric on V . E.g., if V is a graph, one can take

d(x , y) to be given by the graph distance, i.e., the length of

the shortest path of edges connecting x and y .

For X , Y ⊂ V , we define

d(X , Y ) = inf{d(x , y) | x ∈ X , y ∈ Y }.
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We will assume that there is a non-increasing function

F : [0,∞) → (0,∞), with the following properties:

(i) ‖F‖ := supx∈V

∑
y∈V F (d(x , y)) < ∞,

(ii) there is a constant C > 0 such that for pairs x , y ∈ V ,∑
z∈V

F (d(x , z))F (d(z , y)) ≤ CF (d(x , y))

Note that if F satisfies (i) and (ii) then so thus

Fa(r) = e−arF (r), for all a ≥ 0, with ‖Fa‖ ≤ ‖F‖, and

Ca ≤ C .

If V = Zν , we can take F (r) = 1
(1+r)ν+ε , for any ε > 0.
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We will assume the following quasi-locality condition on the

interaction Φ:

Suppose we have V with a function F as above, and let a ≥ 0.

‖Φ‖a := sup
x ,y∈V

1

Fa(d(x , y))

∑
X3x ,y

‖Φ(X )‖ < ∞

Under these conditions, the dynamics τt has a quasi-locality

property, expressed by an estimate for commutators of the

form

[ τt(A) , B ] ,

where t ∈ R, A ∈ AX , B ∈ AY , for finite X , Y ⊂ V . The first

such estimates were proved by Lieb & Robinson (1972).
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Lieb-Robinson Estimates

Theorem (N-Sims 06, Hastings-Koma 06, N-S-Ogata 06)

Let V , a ≥ 0, Fa, Ca, ‖Φ‖a, and τt be as above, and t ∈ R,

A ∈ AX , B ∈ AY , for some X , Y ⊂ V . Then, if d(X , Y ) > 0,

we have the bound

‖ [ τt(A) , B ] ‖ ≤ 2‖A‖ ‖B‖
Ca

(
e2Ca‖Φ‖a|t| − 1

) ∑
x∈X

∑
y∈Y

Fa(d(x , y))
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In the important cases of finite-range or exponentially decaying

interactions, one has ‖Φ‖a < ∞ for some a > 0. In that case

the double sum can be estimated by∑
x∈X

∑
y∈Y

Fa(d(x , y)) ≤ ‖F‖min(|X |, |Y |)e−ad(X ,Y )

and one gets the familar Lieb-Robinson bound of the form

‖ [ τt(A) , B ] ‖ ≤ Ce−a(d(X ,Y )−v |t|)

for some C which depends only on A and B , and constants

a, v > 0, which only depend on the model.
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The two main improvements over the original result by Lieb

and Robinson are:

1) The new proof does not require the Fourier transform and

therefore extends to non-lattice (V , d).

2) The constant C is better. In particular ours does not

depend on the dimension(s) of the single-spin Hilbert spaces,

and grows only linearly, rather than exponentially, in the size

of supports of the observables A and B , one of which may

even be infinite.

These improvements are essential for some applications.
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Sketch of the Proof
Suppose V is finite. Consider the function f : R → A defined

by

f (t) := [τt(A), B]. (1)

Differentiate to see that f satisfies the following differential

equation

f ′(t) = −i [f (t), τt (HX )]− i [τt(A), [τt(HX ), B]] , (2)

with the notation

HY =
∑
Z⊂V :

Z∩Y 6=∅

Φ(Z ), (3)

for any subset Y ⊂ V . The first term in (2) above is

norm-preserving, and therefore we have

‖ [τt(A), B] ‖ ≤ ‖[A, B]‖ + 2‖A‖
∫ |t|

0

‖ [τs(HX ), B] ‖ ds (4)
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Define the quantity

CB(X , t) := sup
A∈AX

‖[τt(A), B]‖
‖A‖

, (5)

then (4) implies that

CB(X , t) ≤ CB(X , 0) + 2
∑
Z⊂V :

Z∩X 6=∅

‖Φ(Z )‖
∫ |t|

0

CB(Z , s)ds. (6)

Clearly, one has that

CB(Z , 0) ≤ 2 ‖B‖ δY (Z ), (7)

where δY (Z ) = 0 if Z ∩ Y = ∅ and δY (Z ) = 1 otherwise.

Using this fact, iterate (6) and find that

CB(X , t) ≤ 2‖B‖
∞∑

n=0

(2|t|)n

n!
an, (8)
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where the coefficients are given by

an =
∑
Z1⊂V :

Z1∩X 6=∅

∑
Z2⊂V :

Z2∩Z1 6=∅

· · ·
∑
Zn⊂V :

Zn∩Zn−1 6=∅

n∏
i=1

‖Φ(Zi)‖ δY (Zn). (9)

Using the properties of the function Fa and the norm ‖Φ‖a

one can estimate an:

an ≤ ‖Φ‖n
aC

n−1
a

∑
x∈X

∑
y∈Y

Fa(d(x , y)) ,

and thus complete the proof for finite V .

The uniformity of the estimate in V , lets one prove that the

dynamics converges as V increases. And the same bounds

then hold for the infinite V dynamics.
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Application 1: Existence of the Dynamics
It is well-known that one can use the Lieb-Robinson bound to

establish the existence of the dynamics for infinite lattice

systems.

Let Λn be an increasing exhausting sequence of finite subsets

of an infinite system, V , with interaction Φ. The essential

observation is the following bound: for n > m

‖τΛn
t (A)− τΛm

t (A)‖ ≤
∑

x∈Λn\Λm

∑
X3x

∫ |t|

0

‖[Φ(X ), τΛm
t (A)]‖ ds.
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Theorem (N-Sims-Ogata 06)

Let a ≥ 0, and Φ such that ‖Φ‖a < ∞. Then, the dynamics

{τt}t∈R corresponding to Φ exists as a strongly continuous,

one-parameter group of automorphisms on A. In particular,

lim
n→∞

‖τΛn
t (A)− τt(A)‖ = 0

for all A ∈ A =
⋃

nAΛn . The convergence is uniform for t in

compact sets and independent of the choice of exhausting

sequence {Λn}.
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Application 2: Propagation of Correlations
Let 〈·〉 denote the expectation in a product state, e.g., one

determined by a product vector Ω =
⊗

x∈V Ωx , with

Ωx ∈ H{x}, for all x ∈ V . Then, for A ∈ AX , B ∈ AY , with

X , Y ⊂ V , X ∩ Y = ∅, we have

〈AB〉 = 〈A〉 〈B〉

i.e., no correlations.

Question: how quickly can a dynamics with finite-range (or

other) interactions build up correlations between A and B?

Similar question: how quickly can the state in the regions X

and Y become substantially entangled?

More precisely, we want to bound

|〈τt(AB)〉 − 〈τt(A)〉 〈τt(B)〉|
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Theorem (N-Sims-Ogata 06; similar results by

Bravyi-Hastings-Verstraete, and Eisert-Osborne)

Let V , a ≥ 0, Fa, Ca, ‖Φ‖a, τt , and 〈·〉 be as above, and

t ∈ R, A ∈ AX , B ∈ AY , for some X , Y ⊂ V . Then, if

d(X , Y ) = d > 0, we have the bound

|〈τt(AB)〉 − 〈τt(A)〉 〈τt(B)〉|
≤ C̃a‖A‖ ‖B‖

(
e2Ca‖Φ‖a|t| − 1

)
×

∑
x∈X

∑
y :d(y ,X )≥d/2

+
∑
y∈Y

∑
x :d(x ,Y )≥d/2

 Fa(d(x , y))
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If V = Zν , and Φ is a pair interaction that decays

exponentially as e−ar , with a > 0, and X and Y are finite, our

theorem gives

|〈τt(AB)〉 − 〈τt(A)〉 〈τt(B)〉|
≤ c‖A‖ ‖B‖

(
e2Ca‖Φ‖a|t| − 1

)
(|X |+ |Y |)e−ad(X ,Y )/2

which means that it takes a time

t ∼ a d(X , Y )

2Ca‖Φ‖a

before significant correlations appear between the regions X

and Y .
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Application 3: The Exponential Clustering
Theorem
In the physics literature the term massive ground state implies

two properties: a spectral gap above the ground state and

exponential decay of spatial correlations. It has long been

(correctly) believed that the first implies the second and it is

often also (incorrectly) believed that the second implies the

first.

The setup is as before. For simplicity of the presentation, we

limit ourselves to the case of a unique ground state.

We assume that H ≥ 0 and that Ω ∈ H is the unique

normalized vector state such that HΩ = 0.
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We say that the system has a spectral gap if there exists δ > 0

such that spec(H) ∩ (0, δ) = ∅ and in that case the spectral

gap, γ, is defined by

γ = sup{δ > 0 | spec(H) ∩ (0, δ) = ∅}.

Note: these conditions may be applied in a new representation

of the system, e.g., to cover cases of infinite systems with

discrete symmetry breaking.
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In the following theorem the interactions are assumed to be

exponentially decaying in the sense that there is a > 0 such

that ‖Φ‖a < ∞.

Theorem (N-Sims 2006, Hastings-Koma 2006)

Let V , a > 0, Fa, Ca, ‖Φ‖a, Ω ∈ H and γ > 0 be as above.

Then, there exists µ > 0 and a constant c such that for

A ∈ AX , B ∈ AY , X , Y ⊂ V ,

|〈Ω, ABΩ〉 − 〈Ω, AΩ〉 〈Ω, BΩ〉| ≤ c‖A‖ ‖B‖(|X |+|Y |)e−µd(X ,Y ).

One can take

µ =
aγ

γ + 4‖Φ‖a
.
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Application 4: A D-Dimensional
Lieb-Schultz-Mattis Theorem
The Lieb-Schultz-Mattis (LSM) theorem is about specific

models. The classic result (LSM 1961) is about the spin-1/2

AF chain. It was generalized to other 1D models by Affleck

and Lieb (1985). Heisenberg chain: V = [1, L], and Hx
∼= C2,

HL =
L−1∑
x=1

Sx · Sx+1

The LSM Theorem states that if the ground state of HL is

unique, then the gap to the first exited state is bounded by

C/L. A result of Lieb and Mattis (1966), shows that for the

particular model HL with L even, this is indeed the case.
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One expects that when the conditions of the LSM Theorem

are fullfilled, the excitation spectrum in the thermodynamic

limit has no gap above the ground state.

Recently, Hastings derived a higher-dimensional version (2004,

not obviously rigorous). We now have a rigorous proof of such

a result.

Let V = [1, L]× V⊥
L ⊂ Zν , with V⊥

L ⊂ Zν−1, such that

|V⊥
L | ≤ CLν−1. We will assume periodic boundary conditions

in the first coordinate. The spin systems on each copy of V⊥

are the same and have a total half-integer spin:∑
x∈V⊥L

sx = k + 1/2, for some nonnegative integer k .
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The simplest model to which our theorem applies is the

antiferromagnetic Heisenberg Hamiltonian on V . Only

translation invariance in the first coordinate is used.

Theorem (N-Sims, arXiv:math-ph/0608046)

If the ground state of HV is non-degenerate, then the gap

above it is bounded by

C
log L

L

The proof of this theorem is by construction of a suitable

variational state for the low-lying excitation. But ...
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The proof of this theorem is complicated by the fact that the

ground state is unknown. Conceptually, the variational state is

the ground state of a modified Hamiltonian, Hθ, in which the

interactions in one hyperplane have been twisted by an angle θ.

The idea of Hastings’ (2004) was to describe this state as the

solution of a differential equation in the variable θ with the

original ground state as initial condition.

Both the new Lieb-Robinson bounds and the Exponential

Clustering Theorem play a crucial role in estimating the energy

of the variational state and proving its orthogonality to the

ground state.
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Conclusion

We continue to improve our understanding of the dynamics of

quantum spin systems, in particular its locality properties.

New knowledge about the dynamics can be used to better

understand correlations, excitations etc., and may lead to

further applications, in particular to perturbation theory and to

study computability of quantum states.


