Polynomial families and Boolean probability

Michael Anshelevich

January 17, 2008

Derivative: $\left(x^{n}\right)^{\prime}=n x^{n-1}, \quad x^{0}=1$.

1. Paul Appell 1880: Appell polynomials $=$ "generalized powers"

$$
A_{n}(x)^{\prime}=n A_{n-1}(x), \quad A_{0}(x)=1
$$

and

$$
\int A_{n}(x) d \mu(x)=0
$$

for some probability measure μ.

Equivalently: X a random variable with distribution μ, denote A_{n} by A_{n}^{X},

$$
\mathbb{E}\left[A_{n}^{X}(X)\right]=0
$$

Examples.

Hermite polynomials, $d \mu=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$,
Bernoulli polynomials, $d \mu=\mathbf{1}_{[0,1]} d x$.
2. Generating function:

$$
\sum_{n=0}^{\infty} \frac{1}{n!} A_{n}(x) z^{n}=e^{x z-\ell(z)}
$$

where

$$
\ell(z)=\log \int e^{x z} d \mu(x)
$$

3. Binomial property: if X, Y are independent random variables, then

$$
A_{n}^{X+Y}(X+Y)=\sum_{k=0}^{n}\binom{n}{k} A_{k}^{X}(X) A_{n-k}^{Y}(Y)
$$

(compare $\left.(X+Y)^{n}\right)$.
4. Martingale property: if $\left\{X_{t}\right\}$ is a Lévy process, i.e. a random process with stationary independent increments, then

$$
\mathbb{E}\left[A_{n}^{X_{t}}\left(X_{t}\right) \mid \leq s\right]=A_{n}^{X_{s}}\left(X_{s}\right) .
$$

CONNECTION WITH FREE PROBABILITY.

Start with the difference quotient

$$
\begin{gathered}
\partial(f)(x, y)=\frac{f(x)-f(y)}{x-y} \\
\partial\left(x^{n}\right)=\sum_{k=0}^{n-1} x^{k} y^{n-k-1}
\end{gathered}
$$

So define the free Appell polynomials by

$$
\partial A_{n}(x, y)=\sum_{k=0}^{n-1} A_{k}(x) A_{n-k-1}(y), \quad A_{0}(x)=1
$$

and

$$
\int A_{n}(x) d \mu(x)=0 \quad \text { or } \quad \mathbb{E}\left[A_{n}^{X}(X)\right]=0
$$

Examples: Chebyshev polynomials, $d \mu=\frac{1}{2 \pi} \sqrt{4-x^{2}} d x$.
2. Generating function:

$$
\sum_{n=0}^{\infty} A_{n}(x) z^{n}=\frac{1}{1-x z+z R(z)}
$$

where $R(z)=R$-transform of μ.
3. Binomial property: if X, Y are freely independent random variables, then

$$
\begin{aligned}
& \qquad \begin{aligned}
& A_{n}^{X+Y}(X+Y)= \sum A_{u(1)}^{X}(X) A_{u(2)}^{Y}(Y) A_{u(3)}^{X}(X) A_{u(4)}^{Y}(Y) \ldots \\
&+\sum A_{v(1)}^{Y}(Y) A_{v(2)}^{X}(X) A_{v(3)}^{Y}(Y) A_{v(4)}^{X}(X) \ldots, \\
& \text { where } u(1)+u(2)+\ldots=v(1)+v(2)+\ldots=n
\end{aligned}
\end{aligned}
$$

Example.

$$
\begin{aligned}
A_{3}^{X+Y}(X+Y)= & A_{3}^{X}(X)+A_{2}^{X}(X) A_{1}^{Y}(Y)+A_{1}^{X}(X) A_{1}^{Y}(Y) A_{1}^{X}(X) \\
& +A_{1}^{Y}(Y) A_{2}^{X}(X)+A_{1}^{X}(X) A_{2}^{Y}(Y) \\
& +A_{1}^{Y}(Y) A_{1}^{X}(X) A_{1}^{Y}(Y)+A_{2}^{Y}(Y) A_{1}^{X}(X)+A_{3}^{Y}(Y) .
\end{aligned}
$$

(again compare $(X+Y)^{n}$).
4. Martingale property: if $\left\{X_{t}\right\}$ is a free Lévy process, i.e. a random process with stationary freely independent increments, then

$$
\mathbb{E}\left[A_{n}^{X_{t}}\left(X_{t}\right) \mid \leq s\right]=A_{n}^{X_{s}}\left(X_{s}\right) .
$$

5. Polynomials with generating function

$$
\sum_{n=0}^{\infty} P_{n}(x) z^{n}=\frac{1}{1-x U(z)+U(z) R(U(z))}
$$

for some $U(z)$ also martingales. Free Sheffer polynomials.
6. Free Meixner distributions $=$ measures for which their orthogonal polynomials are free Sheffer (classical versions classified by Meixner 1934). In this case,

$$
U(z)=R(z)^{\langle-1\rangle}
$$

and

$$
\frac{R(z)}{z}=1+b R(z)+c R(z)^{2}
$$

Examples. Semicircular, Marchenko-Pastur, limit of Jacobi / double Wishart, arcsine, Kesten measures, Bernoulli distributions.

In today's talk: start with a very simple derivative operator

$$
D f(x)=\frac{f(x)-f(0)}{x} .
$$

The $q=0$ version of the q-derivative operator

$$
\begin{gathered}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x} . \\
D\left(x^{n}\right)=x^{n-1}, \quad x^{0}=1 .
\end{gathered}
$$

So define the (Boolean) Appell polynomials by

$$
D A_{n}(x)=A_{n-1}(x), \quad A_{0}(x)=1
$$

and

$$
\int A_{n}(x) d \mu(x)=0 \quad \text { or } \quad \mathbb{E}\left[A_{n}^{X}(X)\right]=0
$$

2. Generating function:

$$
\sum_{n=0}^{\infty} A_{n}(x) z^{n}=\frac{1-\eta_{\mu}(z)}{1-x z}
$$

What is $\eta_{\mu}(z)$?

$$
1=\int \frac{1-\eta(1 / z)}{1-x / z} d \mu=z \int \frac{1-\eta(1 / z)}{z-x} d \mu=z(1-\eta(1 / z)) G_{\mu}(z) .
$$

So

$$
\eta(1 / z)=1-\frac{1}{z G(z)} .
$$

This function appears in Boolean non-commutative probability theory.
\mathcal{A} an algebra, φ a state on it. Non-unital subalgebras $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{k}$ are Boolean independent if for $b_{i} \in \mathcal{B}_{u(i)}, u(1) \neq u(2) \neq \ldots \neq u(n)$,

$$
\varphi\left[b_{1} b_{2} \ldots b_{n}\right]=\varphi\left[b_{1}\right] \varphi\left[b_{2}\right] \ldots \varphi\left[b_{n}\right] .
$$

Example. In $\mathbb{C}\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle$ with the state

$$
\varphi\left[x_{u(1)} x_{u(2)} \ldots x_{u(n)}\right]=0, \quad \varphi[1]=1,
$$

x_{1}, \ldots, x_{d} are freely independent.
In $\mathbb{C}\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle$ with the state

$$
\varphi\left[x_{u(1)} x_{u(2)} \ldots x_{u(n)}\right]=e^{-n}
$$

x_{1}, \ldots, x_{d} are Boolean independent.
Combinatorics governed by the lattice of interval partitions, isomorphic to the Boolean lattice of subsets.
3. Binomial property: if X, Y are Boolean independent random variables, then

$$
\begin{aligned}
A_{n}^{X+Y}(X+Y)= & A_{n}^{X}(X)+\sum_{k=1}^{n-1}(X+Y)^{k-1} Y A_{n-k}^{X}(X) \\
& +A_{n}^{Y}(Y)+\sum_{k=1}^{n-1}(X+Y)^{k-1} X A_{n-k}^{Y}(Y) .
\end{aligned}
$$

Example.

$$
\begin{aligned}
(X+Y)^{3}= & X^{3}+Y X^{2}+(X+Y) Y X+(X+Y)^{2} Y \\
& +Y^{3}+X Y^{2}+(X+Y) X Y+(X+Y)^{2} X
\end{aligned}
$$

4. Martingale property: if $\left\{X_{t}\right\}$ is a Boolean Lévy process, i.e. a random process with stationary Boolean independent increments, then

$$
\mathbb{E}\left[A_{n}\left(X_{t}\right) \mid \leq s\right]=A_{n}\left(X_{s}\right) .
$$

Boolean states typically not tracial, so this does not immediately imply the Markov property; known due to Franz 2003.
5. Boolean Sheffer polynomials

$$
\sum_{n=0}^{\infty} P_{n}(x) z^{n}=\frac{1-\eta(V(z))}{1-x V(z)}
$$

Proposition. These are the same as free:

$$
\frac{1}{1-x U(z)+U(z) R(U(z))}=\frac{1-\eta(V(z))}{1-x V(z)}
$$

where

$$
V(z)=(1+U(z) R(U(z)))^{-1} U(z) .
$$

Remark. Everything works in the multivariate situation. Start with "left" partial derivatives $D_{1}, D_{2}, \ldots, D_{d}$,

$$
D_{i}\left(x_{j} x_{u(1)} x_{u(2)} \ldots x_{u(k)}\right)=\delta_{i j} x_{u(1)} x_{u(2)} \ldots x_{u(k)}
$$

6. Corollary. Boolean Meixner distributions $=$ free Meixner distributions.

Moreover,

$$
V(z)=(D \eta(z))^{\langle-1\rangle}
$$

and

$$
D^{2} \eta(z)=1+b D \eta(z)+(1+c)(D \eta(z))^{2} .
$$

Recall

$$
D^{2}(z R(z))=1+b D(z R(z))+c(D(z R(z)))^{2}
$$

and

$$
\ell(z)^{\prime \prime}=1+\beta \ell(z)^{\prime}+\gamma\left(\ell(z)^{\prime}\right)^{2}
$$

Bercovici, Pata: there are bijections between infinitely divisible, freely infinitely divisible, Boolean infinitely divisible distributions.

$$
\begin{aligned}
\ell_{\mu}(z)=z R_{\nu}(z) & =\eta_{\zeta}(z) \\
\mu \leftrightarrow \nu & \leftrightarrow \quad \\
\text { Gaussian } \leftrightarrow \text { Semicircular } & \leftrightarrow \text { Symmetric Bernoulli, } \\
\text { Poisson } \leftrightarrow \text { Marchenko-Pastur } & \leftrightarrow \text { Asymmetric Bernoulli. }
\end{aligned}
$$

Does not take classical Meixner to free Meixner.

Takes free Meixner to Boolean Meixner: $\mu_{b, c} \mapsto \mu_{b, 1+c}$.
More general results on the behavior under the Belinschi-Nica transformation.

Again, this is all true in the multi-variable case.

If μ is a Meixner distribution, the orthogonal polynomials for $\mu^{* t}$ satisfy recursion relations

$$
x P_{n}(x)=P_{n+1}(x)+\left(t \beta_{0}+n b\right) P_{n}(x)+n\left(t \gamma_{1}+(n-1) c\right) P_{n-1} .
$$

If μ is a free / Boolean Meixner distribution, the orthogonal polynomials for $\mu^{\boxplus t}$ satisfy recursion relations

$$
\begin{aligned}
& x P_{0}(x)=P_{1}(x)+t \beta_{0} P_{0}(x) \\
& x P_{1}(x)=P_{2}(x)+\left(t \beta_{0}+b\right) P_{1}(x)+t \gamma_{1} P_{0} \\
& x P_{n}(x)=P_{n+1}(x)+\left(t \beta_{0}+b\right) P_{n}(x)+\left(t \gamma_{1}+c\right) P_{n-1} .
\end{aligned}
$$

In contrast, if μ is any distribution, the orthogonal polynomials for $\mu^{\uplus t}$ satisfy recursion relations

$$
\begin{aligned}
& x P_{0}(x)=P_{1}(x)+t \beta_{0} P_{0}(x), \\
& x P_{1}(x)=P_{2}(x)+\beta_{1} P_{1}(x)+t \gamma_{1} P_{0}, \\
& x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1} .
\end{aligned}
$$

Proof using (multivariate) continued fractions.
$\varphi=$ state (with monic orthogonal polynomials).

$$
1+M(\mathbf{z})=1+\sum_{i} \varphi\left[x_{i}\right] z_{i}+\sum_{i, j} \varphi\left[x_{i} x_{j}\right] z_{i} z_{j}+\ldots
$$

its moment generating function.

Stieltjes continued fraction: one-variable case.

$$
\begin{aligned}
1+M(z) & =1+\varphi[x] z+\varphi\left[x^{2}\right] z^{2}+\ldots \\
& =\frac{1}{1-\alpha_{0} z-\frac{\omega_{1} z^{2}}{1-\alpha_{1} z-\frac{\omega_{2} z^{2}}{1-\alpha_{2} z-\frac{\omega_{3} z^{2}}{1-\ldots}}}} .
\end{aligned}
$$

Proposition. For $k=1,2, \ldots$, there are diagonal non-negative $d^{k} \times d^{k}$ matrices $\mathcal{C}^{(k)}$ and Hermitian matrices $\mathcal{T}_{i}{ }^{(k)}$, such that
$1+M(\mathrm{z})=$
$\frac{1}{1-\sum_{i_{0}} z_{i_{0}} \mathcal{T}_{i_{0}}^{(0)}-\frac{\sum_{j_{1}} z_{j_{1}} E_{j_{1}} \mathcal{C}^{(1)} \mid \sum_{k_{1}} E_{k_{1}} z_{k_{1}}}{1-\sum_{i_{1}} z_{i_{1}} \mathcal{T}_{i_{1}}^{(1)}-\frac{\sum_{j_{2}} z_{j_{2}} E_{j_{2}} \mathcal{C}^{(2)} \mid \sum_{k_{2}} E_{k_{2}} z_{k_{2}}}{1-\sum_{i_{2}} z_{i_{2}} \mathcal{T}_{i_{2}}^{(2)}-\frac{\sum_{j_{3}} z_{j_{3}} E_{j_{3}} \mathcal{C}^{(3)} \mid \sum_{k_{3}} E_{k_{3}}}{1-\ldots}}} .}$

$$
M_{d^{2} \times d^{2}}=M_{d \times d} \otimes M_{d \times d} .
$$

Proposition. Suppose X, Y are (appropriately) independent, self-adjoint, non-degenerate and there are numbers $\alpha, \alpha_{0}, C, a, b \in \mathbb{R}$ such that

$$
\varphi[X \mid X+Y]=\alpha(X+Y)+\alpha_{0}
$$

and

$$
\operatorname{Var}[X \mid X+Y]=C\left(1+a(X+Y)+b(X+Y)^{2}\right)
$$

X, Y independent \Rightarrow Meixner (Laha, Lukacs).
X, Y freely independent \Rightarrow free Meixner (Bożejko, Bryc).
X, Y Boolean independent \Rightarrow Bernoulli.

