Polynomial families and Boolean probability

Michael Anshelevich

January 17, 2008

Derivative: $(x^n)' = nx^{n-1}, \quad x^0 = 1.$

1. Paul Appell 1880: Appell polynomials = "generalized powers"

$$A_n(x)' = nA_{n-1}(x), \qquad A_0(x) = 1$$

and

$$\int A_n(x) \, d\mu(x) = 0$$

for some probability measure μ .

Equivalently: X a random variable with distribution μ , denote A_n by A_n^X ,

$$\mathbb{E}\left[A_n^X(X)\right] = 0.$$

Examples.

Hermite polynomials, $d\mu = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} dx$,

Bernoulli polynomials, $d\mu = \mathbf{1}_{[0,1]} dx$.

2. Generating function:

$$\sum_{n=0}^{\infty} \frac{1}{n!} A_n(x) z^n = e^{xz - \ell(z)},$$

where

$$\ell(z) = \log \int e^{xz} \, d\mu(x).$$

3. Binomial property: if X, Y are independent random variables, then

$$A_n^{X+Y}(X+Y) = \sum_{k=0}^{n} {n \choose k} A_k^X(X) A_{n-k}^Y(Y)$$

(compare $(X + Y)^n$).

4. Martingale property: if $\{X_t\}$ is a Lévy process, i.e. a random process with stationary independent increments, then

$$\mathbb{E}\left[A_n^{X_t}(X_t)| \le s\right] = A_n^{X_s}(X_s).$$

CONNECTION WITH FREE PROBABILITY.

Start with the difference quotient

$$\partial(f)(x,y) = \frac{f(x) - f(y)}{x - y}.$$

$$\partial(x^n) = \sum_{k=0}^{n-1} x^k y^{n-k-1}.$$

So define the free Appell polynomials by

$$\partial A_n(x,y) = \sum_{k=0}^{n-1} A_k(x) A_{n-k-1}(y), \qquad A_0(x) = 1$$

and

$$\int A_n(x) d\mu(x) = 0 \quad \text{or} \quad \mathbb{E}\left[A_n^X(X)\right] = 0.$$

Examples: Chebyshev polynomials, $d\mu = \frac{1}{2\pi} \sqrt{4 - x^2} dx$.

2. Generating function:

$$\sum_{n=0}^{\infty} A_n(x) z^n = \frac{1}{1 - xz + zR(z)},$$

where R(z) = R-transform of μ .

3. Binomial property: if X, Y are freely independent random variables, then

$$A_n^{X+Y}(X+Y) = \sum A_{u(1)}^X(X) A_{u(2)}^Y(Y) A_{u(3)}^X(X) A_{u(4)}^Y(Y) \dots + \sum A_{v(1)}^Y(Y) A_{v(2)}^X(X) A_{v(3)}^Y(Y) A_{v(4)}^X(X) \dots,$$

where $u(1) + u(2) + \ldots = v(1) + v(2) + \ldots = n$.

Example.

$$\begin{split} A_3^{X+Y}(X+Y) &= A_3^X(X) + A_2^X(X)A_1^Y(Y) + A_1^X(X)A_1^Y(Y)A_1^X(X) \\ &+ A_1^Y(Y)A_2^X(X) + A_1^X(X)A_2^Y(Y) \\ &+ A_1^Y(Y)A_1^X(X)A_1^Y(Y) + A_2^Y(Y)A_1^X(X) + A_3^Y(Y). \end{split}$$
 (again compare $(X+Y)^n$).

4. Martingale property: if $\{X_t\}$ is a free Lévy process, i.e. a random process with stationary freely independent increments, then

$$\mathbb{E}\left[A_n^{X_t}(X_t)| \le s\right] = A_n^{X_s}(X_s).$$

5. Polynomials with generating function

$$\sum_{n=0}^{\infty} P_n(x)z^n = \frac{1}{1 - xU(z) + U(z)R(U(z))}$$

for some U(z) also martingales. Free Sheffer polynomials.

6. Free Meixner distributions = measures for which their orthogonal polynomials are free Sheffer (classical versions classified by Meixner 1934). In this case,

$$U(z) = R(z)^{\langle -1 \rangle}$$

and

$$\frac{R(z)}{z} = 1 + bR(z) + cR(z)^{2}.$$

Examples. Semicircular, Marchenko-Pastur, limit of Jacobi / double Wishart, arcsine, Kesten measures, Bernoulli distributions.

In today's talk: start with a very simple derivative operator

$$Df(x) = \frac{f(x) - f(0)}{x}.$$

The q = 0 version of the q-derivative operator

$$D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}.$$

$$D(x^n) = x^{n-1}, \qquad x^0 = 1.$$

So define the (Boolean) Appell polynomials by

$$DA_n(x) = A_{n-1}(x), \qquad A_0(x) = 1$$

and

$$\int A_n(x) d\mu(x) = 0 \quad \text{or} \quad \mathbb{E}\left[A_n^X(X)\right] = 0.$$

2. Generating function:

$$\sum_{n=0}^{\infty} A_n(x) z^n = \frac{1 - \eta_{\mu}(z)}{1 - xz}.$$

What is $\eta_{\mu}(z)$?

$$1 = \int \frac{1 - \eta(1/z)}{1 - x/z} d\mu = z \int \frac{1 - \eta(1/z)}{z - x} d\mu = z (1 - \eta(1/z)) G_{\mu}(z).$$

So

$$\eta(1/z) = 1 - \frac{1}{zG(z)}.$$

This function appears in Boolean non-commutative probability theory.

 \mathcal{A} an algebra, φ a state on it. Non-unital subalgebras $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_k$ are Boolean independent if for $b_i \in \mathcal{B}_{u(i)}$, $u(1) \neq u(2) \neq \dots \neq u(n)$,

$$\varphi [b_1 b_2 \dots b_n] = \varphi [b_1] \varphi [b_2] \dots \varphi [b_n].$$

Example. In $\mathbb{C}\langle x_1, x_2, \dots, x_d \rangle$ with the state

$$\varphi \left[x_{u(1)} x_{u(2)} \dots x_{u(n)} \right] = 0, \qquad \varphi \left[1 \right] = 1,$$

 x_1, \ldots, x_d are freely independent.

In $\mathbb{C}\langle x_1, x_2, \dots, x_d \rangle$ with the state

$$\varphi\left[x_{u(1)}x_{u(2)}\dots x_{u(n)}\right] = e^{-n},$$

 x_1, \ldots, x_d are Boolean independent.

Combinatorics governed by the lattice of interval partitions, isomorphic to the Boolean lattice of subsets.

3. Binomial property: if X, Y are Boolean independent random variables, then

$$A_n^{X+Y}(X+Y) = A_n^X(X) + \sum_{k=1}^{n-1} (X+Y)^{k-1} Y A_{n-k}^X(X)$$
$$+ A_n^Y(Y) + \sum_{k=1}^{n-1} (X+Y)^{k-1} X A_{n-k}^Y(Y).$$

Example.

$$(X+Y)^3 = X^3 + YX^2 + (X+Y)YX + (X+Y)^2Y + Y^3 + XY^2 + (X+Y)XY + (X+Y)^2X.$$

4. Martingale property: if $\{X_t\}$ is a Boolean Lévy process, i.e. a random process with stationary Boolean independent increments, then

$$\mathbb{E}\left[A_n(X_t)\right] \leq s = A_n(X_s).$$

Boolean states typically not tracial, so this does not immediately imply the Markov property; known due to Franz 2003.

5. Boolean Sheffer polynomials

$$\sum_{n=0}^{\infty} P_n(x) z^n = \frac{1 - \eta(V(z))}{1 - xV(z)}.$$

Proposition. These are the same as free:

$$\frac{1}{1 - xU(z) + U(z)R(U(z))} = \frac{1 - \eta(V(z))}{1 - xV(z)},$$

where

$$V(z) = \left(1 + U(z)R(U(z))\right)^{-1}U(z).$$

Remark. Everything works in the multivariate situation. Start with "left" partial derivatives D_1, D_2, \ldots, D_d ,

$$D_i(x_j x_{u(1)} x_{u(2)} \dots x_{u(k)}) = \delta_{ij} x_{u(1)} x_{u(2)} \dots x_{u(k)}$$

6. Corollary. Boolean Meixner distributions = free Meixner distributions.

Moreover,

$$V(z) = (D\eta(z))^{\langle -1 \rangle}$$

and

$$D^{2}\eta(z) = 1 + bD\eta(z) + (1+c)(D\eta(z))^{2}.$$

Recall

$$D^{2}(zR(z)) = 1 + bD(zR(z)) + c(D(zR(z)))^{2}$$

and

$$\ell(z)'' = 1 + \beta \ell(z)' + \gamma (\ell(z)')^2.$$

Bercovici, Pata: there are bijections between infinitely divisible, freely infinitely divisible, Boolean infinitely divisible distributions.

$$\ell_{\mu}(z) = zR_{\nu}(z) = \eta_{\zeta}(z),$$

$$\mu \leftrightarrow \nu \leftrightarrow \zeta,$$

Gaussian

→ Semicircular

→ Symmetric Bernoulli,

Poisson ← Marchenko-Pastur ← Asymmetric Bernoulli.

Does not take classical Meixner to free Meixner.

Takes free Meixner to Boolean Meixner: $\mu_{b,c} \mapsto \mu_{b,1+c}$.

More general results on the behavior under the Belinschi-Nica transformation.

Again, this is all true in the multi-variable case.

If μ is a Meixner distribution, the orthogonal polynomials for μ^{*t} satisfy recursion relations

$$xP_n(x) = P_{n+1}(x) + (t\beta_0 + nb)P_n(x) + n(t\gamma_1 + (n-1)c)P_{n-1}.$$

If μ is a free / Boolean Meixner distribution, the orthogonal polynomials for $\mu^{\boxplus t}$ satisfy recursion relations

$$xP_0(x) = P_1(x) + t\beta_0 P_0(x),$$

$$xP_1(x) = P_2(x) + (t\beta_0 + b)P_1(x) + t\gamma_1 P_0,$$

$$xP_n(x) = P_{n+1}(x) + (t\beta_0 + b)P_n(x) + (t\gamma_1 + c)P_{n-1}.$$

In contrast, if μ is any distribution, the orthogonal polynomials for $\mu^{\uplus t}$ satisfy recursion relations

$$xP_0(x) = P_1(x) + t\beta_0 P_0(x),$$

$$xP_1(x) = P_2(x) + \beta_1 P_1(x) + t\gamma_1 P_0,$$

$$xP_n(x) = P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}.$$

Proof using (multivariate) continued fractions.

 $\varphi = \text{state}$ (with monic orthogonal polynomials).

$$1 + M(\mathbf{z}) = 1 + \sum_{i} \varphi [x_i] z_i + \sum_{i,j} \varphi [x_i x_j] z_i z_j + \dots$$

its moment generating function.

Stieltjes continued fraction: one-variable case.

$$1 + M(z) = 1 + \varphi[x]z + \varphi[x^{2}]z^{2} + \dots$$

$$= \frac{1}{1 - \alpha_{0}z - \frac{\omega_{1}z^{2}}{1 - \alpha_{1}z - \frac{\omega_{2}z^{2}}{1 - \alpha_{2}z - \frac{\omega_{3}z^{2}}{1 - \dots}}}.$$

Proposition. For k=1,2,..., there are diagonal non-negative $d^k \times d^k$ matrices $\mathcal{C}^{(k)}$ and Hermitian matrices $\mathcal{T}_i^{(k)}$, such that

$$1 + M(\mathbf{z}) =$$

 $\frac{1}{1 - \sum_{i_0} z_{i_0} T_{i_0}^{(0)} - \frac{\sum_{j_1} z_{j_1} E_{j_1} \mathcal{C}^{(1)} | \sum_{k_1} E_{k_1} z_{k_1}}{1 - \sum_{i_1} z_{i_1} T_{i_1}^{(1)} - \frac{\sum_{j_2} z_{j_2} E_{j_2} \mathcal{C}^{(2)} | \sum_{k_2} E_{k_2} z_{k_2}}{1 - \sum_{i_2} z_{i_2} T_{i_2}^{(2)} - \frac{\sum_{j_3} z_{j_3} E_{j_3} \mathcal{C}^{(3)} | \sum_{k_3} E_{k_3}}{1}}$

$$M_{d^2 \times d^2} = M_{d \times d} \otimes M_{d \times d}.$$

LAHA-LUKACS PROPERTY.

Proposition. Suppose X,Y are (appropriately) independent, self-adjoint, non-degenerate and there are numbers $\alpha,\alpha_0,C,a,b\in\mathbb{R}$ such that

$$\varphi[X|X+Y] = \alpha(X+Y) + \alpha_0$$

and

$$Var[X|X+Y] = C\Big(1 + a(X+Y) + b(X+Y)^2\Big).$$

X, Y independent \Rightarrow Meixner (Laha, Lukacs).

X, Y freely independent \Rightarrow free Meixner (Bożejko, Bryc).

X, Y Boolean independent \Rightarrow Bernoulli.