```
f(z),\mu\boxplus etc.
H. Bercovici
```


Complex Analytic Methods in Free Probability Theory

Hari Bercovici

BIRS, January 2008

Random variables

H. Bercovici

- (A, τ) a W^{*}-probability space; $A=L^{\infty}(\tau)$

Random variables

H. Bercovici

- (A, τ) a W^{\star}-probability space; $A=L^{\infty}(\tau)$
- $L^{0}(\tau)=\left\{y^{-1} x: x, y \in A, y \neq 0\right.$ a.s. $\}$ arbitrary random variables

Random variables

H. Bercovici

- (A, τ) a W^{*}-probability space; $A=L^{\infty}(\tau)$
- $L^{0}(\tau)=\left\{y^{-1} x: x, y \in A, y \neq 0\right.$ a.s. $\}$ arbitrary random variables
- This is still a *-algebra

Random variables

- (A, τ) a W^{*}-probability space; $A=L^{\infty}(\tau)$
- $L^{0}(\tau)=\left\{y^{-1} x: x, y \in A, y \neq 0\right.$ a.s. $\}$ arbitrary random variables
- This is still a *-algebra
- $x \in L^{0}(\tau), x=x^{*}=\int_{-\infty}^{\infty} t d e_{x}(t)$

Random variables

- (A, τ) a W^{*}-probability space; $A=L^{\infty}(\tau)$
- $L^{0}(\tau)=\left\{y^{-1} x: x, y \in A, y \neq 0\right.$ a.s. $\}$ arbitrary random variables
- This is still a *-algebra
- $x \in L^{0}(\tau), x=x^{*}=\int_{-\infty}^{\infty} t d e_{x}(t)$
- $\mu_{x}(\sigma)=\tau\left(e_{x}(\sigma)\right)$ probability distribution of x

Random variables

- (A, τ) a W ${ }^{*}$-probability space; $A=L^{\infty}(\tau)$
- $L^{0}(\tau)=\left\{y^{-1} x: x, y \in A, y \neq 0\right.$ a.s. $\}$ arbitrary random variables
- This is still a *-algebra
- $x \in L^{0}(\tau), x=x^{*}=\int_{-\infty}^{\infty} t d e_{x}(t)$
- $\mu_{x}(\sigma)=\tau\left(e_{x}(\sigma)\right)$ probability distribution of x
- $A_{x} \mathbf{w}^{\star}$ closed algebra generated by $\left\{e_{x}((-\infty, t)): t \in \mathbb{R}\right\}(\sigma$-algebra of $x)$

Freeness
H. Bercovici

Free convolutions
Analytic apparatus

- $\left(x_{i}\right)_{i \in I} \subset L^{0}(\tau), x_{i}=x_{i}^{*}$

Freeness
H. Bercovici

- $\left(x_{i}\right)_{i \in I} \subset L^{0}(\tau), x_{i}=x_{i}^{*}$
- $\left(x_{i}\right)_{i \in I}$ is free if $\left(A_{x_{i}}\right)_{i \in I}$ are free in (A, τ)

Freeness

H. Bercovici

- $\left(x_{i}\right)_{i \in I} \subset L^{0}(\tau), x_{i}=x_{i}^{*}$
- $\left(x_{i}\right)_{i \in I}$ is free if $\left(A_{x_{i}}\right)_{i \in I}$ are free in (A, τ)
- When x not selfadjoint, $x=h+i k, A_{x}$ generated by $A_{h} \cup A_{k}$
- $\left(x_{i}\right)_{i \in I} \subset L^{0}(\tau), x_{i}=x_{i}^{*}$
- $\left(x_{i}\right)_{i \in I}$ is free if $\left(A_{x_{i}}\right)_{i \in I}$ are free in (A, τ)
- When x not selfadjoint, $x=h+i k, A_{x}$ generated by $A_{h} \cup A_{k}$
- Corresponding notion: *-freeness

Convolutions

H. Bercovici

Free convolutions
Analytic apparatus

- $x=x^{*}, y=y^{*}$ free variables
H. Bercovici
- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}

Convolutions

H. Bercovici

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution

Convolutions

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution
- assume $x \geq 0$

Convolutions

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution
- assume $x \geq 0$
- $\mu_{\sqrt{x} y \sqrt{x}}$ depends only on μ_{x} and μ_{y}

Convolutions

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution
- assume $x \geq 0$
- $\mu_{\sqrt{x} y \sqrt{x}}$ depends only on μ_{x} and μ_{y}
- $\mu_{\sqrt{x} y \sqrt{x}}=\mu_{x} \boxtimes \mu_{y}$ free multiplicative convolution

Convolutions

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution
- assume $x \geq 0$
- $\mu_{\sqrt{x} y \sqrt{x}}$ depends only on μ_{x} and μ_{y}
- $\mu_{\sqrt{x} y \sqrt{x}}=\mu_{x} \boxtimes \mu_{y}$ free multiplicative convolution
- x, y free unitary, $\mu_{x y}=\mu_{y x}=\mu_{x} \boxtimes \mu_{y}$

Convolutions

- $x=x^{*}, y=y^{*}$ free variables
- μ_{x+y} depends only on μ_{x} and μ_{y}
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ free additive convolution
- assume $x \geq 0$
- $\mu_{\sqrt{x} y \sqrt{x}}$ depends only on μ_{x} and μ_{y}
- $\mu_{\sqrt{x} y \sqrt{x}}=\mu_{x} \boxtimes \mu_{y}$ free multiplicative convolution
- x, y free unitary, $\mu_{x y}=\mu_{y x}=\mu_{x} \boxtimes \mu_{y}$
- same notation, different semigroup

Examples

H. Bercovici

- $\delta_{r} \boxplus \delta_{s}=\delta_{r+s} ; c_{r} \boxplus c_{s}=c_{r+s}$ for Cauchy (arctangent)

$$
d c_{r}=\frac{r d t}{\pi\left(t^{2}+r^{2}\right)}
$$

Examples

- $\delta_{r} \boxplus \delta_{s}=\delta_{r+s} ; c_{r} \boxplus c_{s}=c_{r+s}$ for Cauchy (arctangent)

$$
d c_{r}=\frac{r d t}{\pi\left(t^{2}+r^{2}\right)}
$$

- $\gamma_{r} \boxplus \gamma_{s}=\gamma_{r+s}$ for semicircle of variance r

$$
d \gamma_{r}=\frac{1}{2 \pi r} \sqrt{4 r-t^{2}} d t
$$

Examples
H. Bercovici

- $\delta_{r} \boxplus \delta_{s}=\delta_{r+s} ; c_{r} \boxplus c_{s}=c_{r+s}$ for Cauchy (arctangent)

$$
d c_{r}=\frac{r d t}{\pi\left(t^{2}+r^{2}\right)}
$$

- $\gamma_{r} \boxplus \gamma_{s}=\gamma_{r+s}$ for semicircle of variance r

$$
d \gamma_{r}=\frac{1}{2 \pi r} \sqrt{4 r-t^{2}} d t
$$

- $\mu=\nu=\left(\delta_{1}+\delta_{-1}\right) / 2$

Examples
H. Bercovici

- $\delta_{r} \boxplus \delta_{s}=\delta_{r+s} ; c_{r} \boxplus c_{s}=c_{r+s}$ for Cauchy (arctangent)

$$
d c_{r}=\frac{r d t}{\pi\left(t^{2}+r^{2}\right)}
$$

- $\gamma_{r} \boxplus \gamma_{s}=\gamma_{r+s}$ for semicircle of variance r

$$
d \gamma_{r}=\frac{1}{2 \pi r} \sqrt{4 r-t^{2}} d t
$$

- $\mu=\nu=\left(\delta_{1}+\delta_{-1}\right) / 2$

$$
\mu \boxplus \nu=\frac{d t}{\pi \sqrt{4-t^{2}}}
$$

$f(z), \mu \boxplus \nu$, etc.

H. Bercovici

Free convolutions

- μ probability distribution on \mathbb{R}

Cauchy transforms

Cauchy transforms

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

Cauchy transforms

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

Cauchy transforms

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

- $F_{\mu}(z)=1 / G_{\mu}(z) ; F_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$

Cauchy transforms

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

- $F_{\mu}(z)=1 / G_{\mu}(z) ; F_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$
- Function inverse $F_{\mu}^{<-1>}$ defined in

$$
D_{r, \varepsilon}=\{z:|z-i r|<(1-\varepsilon) r\} \text { for large } r
$$

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

- $F_{\mu}(z)=1 / G_{\mu}(z) ; F_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$
- Function inverse $F_{\mu}^{<-1>}$ defined in

$$
D_{r, \varepsilon}=\{z:|z-i r|<(1-\varepsilon) r\} \text { for large } r
$$

- $\varphi_{\mu}(z)=\mathcal{R}_{\mu}(1 / z)=F_{\mu}^{<-1>}(z)-z$ V-transform of μ
- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

- $F_{\mu}(z)=1 / G_{\mu}(z) ; F_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$
- Function inverse $F_{\mu}^{<-1>}$ defined in

$$
D_{r, \varepsilon}=\{z:|z-i r|<(1-\varepsilon) r\} \text { for large } r
$$

- $\varphi_{\mu}(z)=\mathcal{R}_{\mu}(1 / z)=F_{\mu}^{<-1>}(z)-z$ V-transform of μ

$$
\varphi_{\mu \boxplus \nu}=\varphi_{\mu}+\varphi_{\nu}
$$

Cauchy transforms

- μ probability distribution on \mathbb{R}
- $z \in \mathbb{C}^{+}$upper half-plane

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{d \mu(t)}{z-t}
$$

- $F_{\mu}(z)=1 / G_{\mu}(z) ; F_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$
- Function inverse $F_{\mu}^{<-1>}$ defined in

$$
D_{r, \varepsilon}=\{z:|z-i r|<(1-\varepsilon) r\} \text { for large } r
$$

- $\varphi_{\mu}(z)=\mathcal{R}_{\mu}(1 / z)=F_{\mu}^{<-1>}(z)-z$ V-transform of μ

$$
\varphi_{\mu \boxplus \nu}=\varphi_{\mu}+\varphi_{\nu}
$$

- There are corresponding results for \boxtimes

$$
\begin{aligned}
& f(z), \mu \boxplus \text { etc. } \\
& \quad,
\end{aligned}
$$

A basic tool

H. Bercovici

Free convolutions
Analytic apparatus Limit theorems

- $\varphi_{\mu}(z)=F_{\mu}^{<-1>}(z)-z$
H. Bercovici

Free convolutions
Analytic apparatus
Limit theorems

- $\varphi_{\mu}(z)=F_{\mu}^{<-1>}(z)-z$
- $\varphi_{\mu}(z) \approx z-F_{\mu}(z)$ in $D_{r, \varepsilon}$ as $r \rightarrow \infty$

A basic tool

- $\varphi_{\mu}(z)=F_{\mu}^{<-1>}(z)-z$
- $\varphi_{\mu}(z) \approx z-F_{\mu}(z)$ in $D_{r, \varepsilon}$ as $r \rightarrow \infty$
- The approximation is uniformly better when μ is concentrated near zero.

A basic tool

- $\varphi_{\mu}(z)=F_{\mu}^{<-1>}(z)-z$
- $\varphi_{\mu}(z) \approx z-F_{\mu}(z)$ in $D_{r, \varepsilon}$ as $r \rightarrow \infty$
- The approximation is uniformly better when μ is concentrated near zero.
- meaning: ratio closer to one

A basic tool

- $\varphi_{\mu}(z)=F_{\mu}^{<-1>}(z)-z$
- $\varphi_{\mu}(z) \approx z-F_{\mu}(z)$ in $D_{r, \varepsilon}$ as $r \rightarrow \infty$
- The approximation is uniformly better when μ is concentrated near zero.
- meaning: ratio closer to one
- larger r
- smaller ε

$f(z), \mu \boxplus \nu$, etc.

Some results

H. Bercovici

- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞

$f(z), \mu \boxplus \nu$, etc.

Some results

- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞
- $\left\{\mu_{n}\right\}_{n \geq 1}, \nu_{n}=\mu_{1} \boxplus \mu_{2} \boxplus \cdots \boxplus \mu_{n}, \rho_{n}=\mu_{1} * \mu_{2} * \cdots * \mu_{n}$

Some results

- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞
- $\left\{\mu_{n}\right\}_{n \geq 1}, \nu_{n}=\mu_{1} \boxplus \mu_{2} \boxplus \cdots \boxplus \mu_{n}, \rho_{n}=\mu_{1} * \mu_{2} * \cdots * \mu_{n}$
- $\nu_{n} \rightarrow \nu \Leftrightarrow \rho_{n} \rightarrow \rho$ (three series theorem)

Some results

- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞
- $\left\{\mu_{n}\right\}_{n \geq 1}, \nu_{n}=\mu_{1} \boxplus \mu_{2} \boxplus \cdots \boxplus \mu_{n}, \rho_{n}=\mu_{1} * \mu_{2} * \cdots * \mu_{n}$
- $\nu_{n} \rightarrow \nu \Leftrightarrow \rho_{n} \rightarrow \rho$ (three series theorem)
- n-divisibility: $\mu=\underbrace{\nu \boxplus \nu \boxplus \cdots \boxplus \nu}_{n \text { times }}$
- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞
- $\left\{\mu_{n}\right\}_{n \geq 1}, \nu_{n}=\mu_{1} \boxplus \mu_{2} \boxplus \cdots \boxplus \mu_{n}, \rho_{n}=\mu_{1} * \mu_{2} * \cdots * \mu_{n}$
- $\nu_{n} \rightarrow \nu \Leftrightarrow \rho_{n} \rightarrow \rho$ (three series theorem)
- n-divisibility: $\mu=\underbrace{\nu \boxplus \nu \boxplus \cdots \boxplus \nu}_{n \text { times }}$
- infinite-divisibility: all n
- $\mu_{n} \rightarrow \mu$ equivalent to $\varphi_{\mu_{n}} \rightarrow \varphi_{\mu}$ in $D_{r, \varepsilon}, \varepsilon$ fixed, r large, with some uniformity at ∞
- $\left\{\mu_{n}\right\}_{n \geq 1}, \nu_{n}=\mu_{1} \boxplus \mu_{2} \boxplus \cdots \boxplus \mu_{n}, \rho_{n}=\mu_{1} * \mu_{2} * \cdots * \mu_{n}$
- $\nu_{n} \rightarrow \nu \Leftrightarrow \rho_{n} \rightarrow \rho$ (three series theorem)
- n-divisibility: $\mu=\underbrace{\nu \boxplus \nu \boxplus \cdots \boxplus \nu}_{n \text { times }}$
- infinite-divisibility: all n
- μ is ∞-divisible $\Leftrightarrow \varphi_{\mu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

```
f(z),\mu\boxplus \nu,
    etc.
```

Free convolutions
Analytic apparatus Limit theorems Regularity Extensions Omissions

- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}

$f(z), \mu \boxplus \geqslant$, etc.

Limit laws

H. Bercovici

Free convolutions

Analytic apparatus
Limit theorems
Regularity Extensions Omissions

- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

Limit laws

- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$

$f(z), \mu \boxplus \geqslant$, etc.

- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$
- If $\mu_{n} \rightarrow \mu$ then μ is ∞-divisible
- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$
- If $\mu_{n} \rightarrow \mu$ then μ is ∞-divisible
- $\mu_{n} \rightarrow \mu \Leftrightarrow \nu_{n} \rightarrow \nu$, where ν is uniquely determined by μ. (Ex.: μ semicircle corresponds with ν normal; CLT)
- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$
- If $\mu_{n} \rightarrow \mu$ then μ is ∞-divisible
- $\mu_{n} \rightarrow \mu \Leftrightarrow \nu_{n} \rightarrow \nu$, where ν is uniquely determined by μ. (Ex.: μ semicircle corresponds with ν normal; CLT)
- almost analogous results for \boxtimes
- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$
- If $\mu_{n} \rightarrow \mu$ then μ is ∞-divisible
- $\mu_{n} \rightarrow \mu \Leftrightarrow \nu_{n} \rightarrow \nu$, where ν is uniquely determined by μ. (Ex.: μ semicircle corresponds with ν normal; CLT)
- almost analogous results for \boxtimes
- differences: the correspondence $\mu \leftrightarrow \nu$ not bijective
- $\left\{\mu_{n j}: n \geq 1,1 \leq j \leq k_{n}\right\}$ distributions on \mathbb{R}
- Infinitesimal if for all $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \min _{1 \leq j \leq k_{n}} \mu_{n j}((-\varepsilon, \varepsilon))=1
$$

- $\mu_{n}=\mu_{n 1} \boxplus \mu_{n 2} \boxplus \cdots \boxplus \mu_{n k_{n}}, \nu_{n}=\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}}$
- If $\mu_{n} \rightarrow \mu$ then μ is ∞-divisible
- $\mu_{n} \rightarrow \mu \Leftrightarrow \nu_{n} \rightarrow \nu$, where ν is uniquely determined by μ. (Ex.: μ semicircle corresponds with ν normal; CLT)
- almost analogous results for \boxtimes
- differences: the correspondence $\mu \leftrightarrow \nu$ not bijective
- for the circle, there are no \boxtimes-idempotents

$f(z), \mu \boxplus \nu$, etc.

Another basic tool

H. Bercovici

Free convolutions
Analytic apparatus Limit theorems
Regularity Extensions Omissions

- $f, g: \mathbb{C}^{+} \rightarrow \mathbb{C}$ analytic

Another basic tool

- $f, g: \mathbb{C}^{+} \rightarrow \mathbb{C}$ analytic
- $f \prec g$ if $f(z)=g(h(z))$ for some $h: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$analytic (Littlewood subordination)

Another basic tool

- $f, g: \mathbb{C}^{+} \rightarrow \mathbb{C}$ analytic
- $f \prec g$ if $f(z)=g(h(z))$ for some $h: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$analytic (Littlewood subordination)
- μ, ν distributions on \mathbb{R}

Another basic tool

- $f, g: \mathbb{C}^{+} \rightarrow \mathbb{C}$ analytic
- $f \prec g$ if $f(z)=g(h(z))$ for some $h: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$analytic (Littlewood subordination)
- μ, ν distributions on \mathbb{R}
- Then $F_{\mu \boxplus \nu} \prec F_{\mu}\left(\right.$ and $\left.F_{\mu \boxplus \nu} \prec F_{\nu}\right)$
- $f, g: \mathbb{C}^{+} \rightarrow \mathbb{C}$ analytic
- $f \prec g$ if $f(z)=g(h(z))$ for some $h: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$analytic (Littlewood subordination)
- μ, ν distributions on \mathbb{R}
- Then $F_{\mu \boxplus \nu} \prec F_{\mu}$ (and $F_{\mu \boxplus \nu} \prec F_{\nu}$)
- Note: subordination functions $F_{\mu}^{<-1>} \circ F_{\mu \boxplus \nu}$ obviously exist at ∞; the important point is they continue to \mathbb{C}^{+}.

$f(z), \mu \boxplus \nu$, etc.

H. Bercovici

Free convolutions
Analytic apparatus Limit theorems
Regularity Extensions Omissions

Regularity consequences

- If $d \mu / d t \in L^{p}$, same is true for $\mu \boxplus \nu$ H. Bercovici

Regularity consequences

- If $d \mu / d t \in L^{p}$, same is true for $\mu \boxplus \nu$
- $\mu \boxplus \nu$ has only finitely many atoms, with total mass <1

Regularity consequences

- If $d \mu / d t \in L^{p}$, same is true for $\mu \boxplus \nu$
- $\mu \boxplus \nu$ has only finitely many atoms, with total mass <1
- $\mu \boxplus \nu$ has no singular continuous component

Regularity consequences

- If $d \mu / d t \in L^{p}$, same is true for $\mu \boxplus \nu$
- $\mu \boxplus \nu$ has only finitely many atoms, with total mass <1
- $\mu \boxplus \nu$ has no singular continuous component
- the density of $\mu \boxplus \nu$ is locally analytic a.e.

Regularity consequences

- If $d \mu / d t \in L^{p}$, same is true for $\mu \boxplus \nu$
- $\mu \boxplus \nu$ has only finitely many atoms, with total mass <1
- $\mu \boxplus \nu$ has no singular continuous component
- the density of $\mu \boxplus \nu$ is locally analytic a.e.
- But: the density of $\mu \boxplus \nu$ may have points of nondifferentiability even when those of μ and ν don't

```
f(z),\mu\boxplus \nu,
    etc.
H. Bercovici
Free convolutions
Analytic apparatus Limit theorems
Regularity Extensions Omissions
- \(\mu\) distribution of \(\mathbb{R}\)
```


Ignorance

H. Bercovici

- μ distribution of \mathbb{R}
- ν symmetric to $\mu\left(\mu=\mu_{x}, \nu=\mu_{-x}\right)$
- μ distribution of \mathbb{R}
- ν symmetric to $\mu\left(\mu=\mu_{x}, \nu=\mu_{-x}\right)$
- $\rho=\mu * \nu, \lambda=\mu \boxplus \nu ; \rho$ and λ are symmetric

Ignorance

- μ distribution of \mathbb{R}
- ν symmetric to $\mu\left(\mu=\mu_{x}, \nu=\mu_{-x}\right)$
- $\rho=\mu * \nu, \lambda=\mu \boxplus \nu ; \rho$ and λ are symmetric
- tails of $\rho: 1-\rho((-t, t)), t \rightarrow \infty$

Ignorance

- μ distribution of \mathbb{R}
- ν symmetric to $\mu\left(\mu=\mu_{x}, \nu=\mu_{-x}\right)$
- $\rho=\mu * \nu, \lambda=\mu \boxplus \nu ; \rho$ and λ are symmetric
- tails of $\rho: 1-\rho((-t, t)), t \rightarrow \infty$
- are comparable to those of μ

Ignorance

- μ distribution of \mathbb{R}
- ν symmetric to $\mu\left(\mu=\mu_{x}, \nu=\mu_{-x}\right)$
- $\rho=\mu * \nu, \lambda=\mu \boxplus \nu ; \rho$ and λ are symmetric
- tails of $\rho: 1-\rho((-t, t)), t \rightarrow \infty$
- are comparable to those of μ
- what about λ ?

Operator-valued

- A algebra, $B \subset A$ unital subalgebra

Operator-valued

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation

Operator-valued

Free convolutions

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$

Operator-valued

Free convolutions

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$
- Freeness can be defined relative to such τ

Operator-valued

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$
- Freeness can be defined relative to such τ
- $x \in A$ has a combinatorial analogue of a distribution

$$
\tau\left(a b_{1} a b_{2} a \cdots b_{n-1} a\right)
$$

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$
- Freeness can be defined relative to such τ
- $x \in A$ has a combinatorial analogue of a distribution

$$
\tau\left(a b_{1} a b_{2} a \cdots b_{n-1} a\right)
$$

- This is a "Fourier coefficient" of order n
- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$
- Freeness can be defined relative to such τ
- $x \in A$ has a combinatorial analogue of a distribution

$$
\tau\left(a b_{1} a b_{2} a \cdots b_{n-1} a\right)
$$

- This is a "Fourier coefficient" of order n
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ where \boxplus is defined combinatorially

Operator-valued

- A algebra, $B \subset A$ unital subalgebra
- $\tau: A \rightarrow B$ conditional expectation
- projection so $\tau\left(b a b^{\prime}\right)=b \tau(a) b^{\prime}$ for $b, b^{\prime} \in B$
- Freeness can be defined relative to such τ
- $x \in A$ has a combinatorial analogue of a distribution

$$
\tau\left(a b_{1} a b_{2} a \cdots b_{n-1} a\right)
$$

- This is a "Fourier coefficient" of order n
- $\mu_{x+y}=\mu_{x} \boxplus \mu_{y}$ where \boxplus is defined combinatorially
- Subordination survives

$f(z), \mu \boxplus \nu$, etc.

Analytic despair

H. Bercovici

Free convolutions
Analytic apparatus
Limit theorems
Regularity
Extensions
Omissions

$$
G_{x}(z)=\tau\left((z-x)^{-1}\right)
$$

Analytic despair

$$
G_{x}(z)=\tau\left((z-x)^{-1}\right)
$$

- To be viewed as a function of $z \in B$. (If $x=x^{*}, z$ can be anything with positive invertible imaginary part; Siegel half-plane.)

Analytic despair

$$
G_{x}(z)=\tau\left((z-x)^{-1}\right)
$$

- To be viewed as a function of $z \in B$. (If $x=x^{*}, z$ can be anything with positive invertible imaginary part; Siegel half-plane.)
- Function theory not sufficiently well developed to undertake the analysis available when $B=\mathbb{C}$.

$$
G_{x}(z)=\tau\left((z-x)^{-1}\right)
$$

- To be viewed as a function of $z \in B$. (If $x=x^{*}, z$ can be anything with positive invertible imaginary part; Siegel half-plane.)
- Function theory not sufficiently well developed to undertake the analysis available when $B=\mathbb{C}$.
- Fully matricial analytic functions may be needed for full understanding.

```
f(z),\mu\boxplus}\nu
    etc.
```

H. Bercovici

Analytic apparatus Limit theorems

Regularity

Extensions
Omissions

- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
H. Bercovici

Analytic apparatus Limit theorems

- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu x_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
H. Bercovici
- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
- X_{n}, Y_{n} independent (classically) with asymptotic distributions μ, ν
- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z I-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
- X_{n}, Y_{n} independent (classically) with asymptotic distributions μ, ν
- Then (spoonful of salt here): $X_{n}+Y_{n}$ has asymptotic distribution $\mu \boxplus \nu$.
- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
- X_{n}, Y_{n} independent (classically) with asymptotic distributions μ, ν
- Then (spoonful of salt here): $X_{n}+Y_{n}$ has asymptotic distribution $\mu \boxplus \nu$.
- Assume now X_{n}, Y_{n} are $n \times \lambda n$ matrices, and $\left|X_{n}\right|=\left(X_{n}^{*} X_{n}\right)^{1 / 2},\left|Y_{n}\right|$ have asymptotic distributions μ, ν
- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
- X_{n}, Y_{n} independent (classically) with asymptotic distributions μ, ν
- Then (spoonful of salt here): $X_{n}+Y_{n}$ has asymptotic distribution $\mu \boxplus \nu$.
- Assume now X_{n}, Y_{n} are $n \times \lambda n$ matrices, and $\left|X_{n}\right|=\left(X_{n}^{*} X_{n}\right)^{1 / 2},\left|Y_{n}\right|$ have asymptotic distributions μ, ν
- Then: $\left|X_{n}+Y_{n}\right|$ has asymptotic distribution $\mu \boxplus_{\lambda} \nu$
- $X_{n}(\omega)$ an $n \times n$ random matrix, $X_{n}=X_{n}^{*}$
- With \mathbb{E} expected value, $\tau_{n}=\operatorname{Tr} / n, X_{n}$ has distribution given by

$$
G_{\mu X_{n}}(z)=\mathbb{E} \tau_{n}\left(\left(z l-X_{n}\right)^{-1}\right) \quad z \in \mathbb{C}^{+}
$$

- Asymptotic (eigenvalue) distribution of $X_{n}: \lim _{n} \mu_{X_{n}}$
- X_{n}, Y_{n} independent (classically) with asymptotic distributions μ, ν
- Then (spoonful of salt here): $X_{n}+Y_{n}$ has asymptotic distribution $\mu \boxplus \nu$.
- Assume now X_{n}, Y_{n} are $n \times \lambda n$ matrices, and $\left|X_{n}\right|=\left(X_{n}^{*} X_{n}\right)^{1 / 2},\left|Y_{n}\right|$ have asymptotic distributions μ, ν
- Then: $\left|X_{n}+Y_{n}\right|$ has asymptotic distribution $\mu \boxplus_{\lambda} \nu$
- many results extend to this operation, questions remain
- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.

Boolean

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

Boolean

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

- $\mu_{b+c}=\mu_{b} \uplus \mu_{c}$ for $b \in B, c \in C$

Boolean

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

- $\mu_{b+c}=\mu_{b} \uplus \mu_{c}$ for $b \in B, c \in C$
- analytic calculation:

$$
F_{\mu \uplus \nu}(z)-z=\left[F_{\mu}(z)-z\right]+\left[F_{\nu}(z)-z\right]
$$

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

- $\mu_{b+c}=\mu_{b} \uplus \mu_{c}$ for $b \in B, c \in C$
- analytic calculation:

$$
F_{\mu \uplus \nu}(z)-z=\left[F_{\mu}(z)-z\right]+\left[F_{\nu}(z)-z\right]
$$

- much of the limit theory is preserved, but
- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

- $\mu_{b+c}=\mu_{b} \uplus \mu_{c}$ for $b \in B, c \in C$
- analytic calculation:

$$
F_{\mu \uplus \nu}(z)-z=\left[F_{\mu}(z)-z\right]+\left[F_{\nu}(z)-z\right]
$$

- much of the limit theory is preserved, but
- generally $\delta_{s} \uplus \delta_{t} \neq \delta_{s+t}$
- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are Boolean independent if for $b_{j} \in B, c_{j} \in C$,

$$
\tau\left(\cdot b_{1} c_{1} b_{2} c_{2} \cdots b_{n} c_{n} \cdot\right)=\cdot \tau\left(b_{1}\right) \tau\left(c_{1}\right) \cdots \tau\left(b_{n}\right) \tau\left(c_{n}\right)
$$

- $\mu_{b+c}=\mu_{b} \uplus \mu_{c}$ for $b \in B, c \in C$
- analytic calculation:

$$
F_{\mu \uplus \nu}(z)-z=\left[F_{\mu}(z)-z\right]+\left[F_{\nu}(z)-z\right]
$$

- much of the limit theory is preserved, but
- generally $\delta_{s} \uplus \delta_{t} \neq \delta_{s+t}$
- There is a multiplicative analogue

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$
- analytic calculation: $F_{\mu \triangleright \nu}=F_{\mu} \circ F_{\nu}$

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$
- analytic calculation: $F_{\mu \triangleright \nu}=F_{\mu} \circ F_{\nu}$
- some of the limit theory is preserved

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$
- analytic calculation: $F_{\mu \triangleright \nu}=F_{\mu} \circ F_{\nu}$
- some of the limit theory is preserved
- $\delta_{s} \triangleright \delta_{t} \neq \delta_{s+t}$

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$
- analytic calculation: $F_{\mu \triangleright \nu}=F_{\mu} \circ F_{\nu}$
- some of the limit theory is preserved
- $\delta_{s} \triangleright \delta_{t} \neq \delta_{s+t}$
- there is a multiplicative version of the convolution

Monotonic

- (A, τ) probability space, $B, C \subset A$ subalgebras not containing the unit.
- B and C are monotone independent if for $b_{j} \in B, c_{j} \in C$,

$$
\begin{gathered}
\tau\left(b_{1} c_{1}\right)=\tau\left(c_{1} b_{1}\right)=\tau\left(b_{1}\right) \tau\left(c_{1}\right) \\
\tau\left(c_{1} b_{1} c_{2}\right)=\tau\left(c_{1}\right) \tau\left(b_{1}\right) \tau\left(c_{2}\right) \\
\text { and } \quad b_{1} c_{1} b_{2}=\tau\left(c_{1}\right) b_{1} b_{2}
\end{gathered}
$$

- $\mu_{b+c}=\mu_{b} \triangleright \mu_{c} b \in B, c \in C$
- analytic calculation: $F_{\mu \triangleright \nu}=F_{\mu} \circ F_{\nu}$
- some of the limit theory is preserved
- $\delta_{s} \triangleright \delta_{t} \neq \delta_{s+t}$
- there is a multiplicative version of the convolution
- there is an operator-valued version as well

```
f(z),\mu\boxplus \nu,
    etc.
- c-freeness
```

- c-freeness
- rates of convergence
- c-freeness
- rates of convergence
- convolution powers
- c-freeness
- rates of convergence
- convolution powers
- much more
- c-freeness
- rates of convergence
- convolution powers
- much more
- credits

