The largest eigenvalue of finite rank deformation of Wigner matrices
M. Capitaine, C. Donati-Martin and D. Féral

1 The model

$$
M_{N}=X_{N}+A_{N}:=\frac{1}{\sqrt{N}} W_{N}+A_{N}
$$

where W_{N} is a $N \times N$ Hermitian matrix such that $\left(W_{N}\right)_{i i}$, $\sqrt{2} \operatorname{Re}\left(\left(W_{N}\right)_{i j}\right)_{i<j}, \sqrt{2} \operatorname{Im}\left(\left(W_{N}\right)_{i j}\right)_{i<j}$ are iid with common distribution $\mu . \mu$ is assumed to be symmetric with variance σ^{2} and it satisfies a Poincaré inequality. A_{N} is a deterministic, Hermitian matrix.

Example: $\mu=N\left(0 ; \sigma^{2}\right), X_{N} \sim G U E\left(N, \frac{\sigma^{2}}{N}\right)$.

2 Some known result in the non deformed case ($A_{N}=0$)

- Convergence of the spectral measure $\mu_{X_{n}}:=\frac{1}{N} \sum_{i} \delta_{\lambda_{i}\left(X_{N}\right)}$ to the Wigner distribution $\mu_{s c}=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-x^{2}} 1_{[-2 \sigma, 2 \sigma]}$.
- Convergence a.s. of $\lambda_{\max }\left(X_{N}\right)$ to 2σ (the right endpoint of the support of the limiting distribution)
- Fluctuations (Tracy-Widom, Soshnikov)
$\sigma^{-1} N^{2 / 3}\left(\lambda_{\max }\left(X_{N}\right)-2 \sigma\right) \xrightarrow{\mathcal{L}}$ T-W distribution F_{2} where the distribution F_{2} can be expressed with the Fredholm determinant of an operator associated to the Airy kernel.

3 The deformation

A_{N} Hermitian of finite rank r (independent of N) with eigenvalues θ_{i} of multiplicity $k_{i} ; \theta_{1}>\theta_{2}>\ldots>\theta_{J}$.
Convergence of the spectral measure to the semicircular distribution $\mu_{s c}$.
What about the extremal eigenvalues?

1) The Gaussian case (Péché)

Ex: θ_{1} with multiplicity 1.

1) si $0 \leq \theta_{1}<\sigma, \quad \sigma^{-1} N^{2 / 3}\left(\lambda_{\max }\left(M_{N}\right)-2 \sigma\right) \xrightarrow{\mathcal{L}} F_{2}$
2) $\operatorname{si} \theta_{1}=\sigma, \quad \sigma^{-1} N^{2 / 3}\left(\lambda_{\max }\left(M_{N}\right)-2 \sigma\right) \xrightarrow{\mathcal{L}} F_{3}$
3) si $\theta_{1}>\sigma, \quad N^{1 / 2}\left(\lambda_{\max }\left(M_{N}\right)-\rho_{\theta_{1}}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma_{\theta_{1}}^{2}\right)$ with $\rho_{\theta_{1}}=\theta_{1}+\frac{\sigma^{2}}{\theta_{1}}>2 \sigma$.
4) The non Gaussian case for a particular A_{N} (Féral-Péché)
A_{N} is the deformation defined by $\left(A_{N}\right)_{i j}=\frac{\theta}{N}$, so that $r=1$ and $\theta_{1}=\theta$.
Same TCL as in the Gaussian case, universality of the fluctuations (independent of μ, the distribution of the entries).

3) The non Gaussian case, A_{N} general

Theorem 1 a.s. behaviour of the spectrum of M_{N}. Let $J_{+\sigma}$ (resp. $J_{-\sigma}$) be the number of j 's such that $\theta_{j}>\sigma\left(\right.$ resp. $\left.\theta_{j}<-\sigma\right)$.
(a) $\forall 1 \leq j \leq J_{+\sigma}, \forall 1 \leq i \leq k_{j}$,

$$
\lambda_{k_{1}+\cdots+k_{j-1}+i}\left(M_{N}\right) \longrightarrow \rho_{\theta_{j}} \quad \text { a.s. }
$$

(b) $\quad \lambda_{k_{1}+\cdots+k_{J_{+\sigma}+1}}\left(M_{N}\right) \longrightarrow 2 \sigma \quad$ a.s.,
(c) $\quad \lambda_{k_{1}+\cdots+k_{J-J_{-}}}\left(M_{N}\right) \longrightarrow-2 \sigma \quad$ a.s.,
(d) $\forall j \geq J-J_{-\sigma}+1, \forall 1 \leq i \leq k_{j}$,

$$
\lambda_{k_{1}+\cdots+k_{j-1}+i}\left(M_{N}\right) \longrightarrow \rho_{\theta_{j}} \quad \text { a.s. }
$$

Remark: Same result as in the sample covariance matrices (Bai-Silverstein, Baik-Silverstein)

4 Elements of Proof of Theorem 1

Step 1 Prove that a.s.

$$
\begin{equation*}
\operatorname{Spect}\left(M_{N}\right) \subset K_{\sigma}\left(\theta_{1}, \ldots \theta_{J}\right)+[-\epsilon,+\epsilon] \tag{1}
\end{equation*}
$$

for N large, where $K_{\sigma}\left(\theta_{1}, \cdots, \theta_{J}\right):=$

$$
\left\{\rho_{\theta_{J}} ; \cdots ; \rho_{\theta_{J-J_{-\sigma}+1}}\right\} \cup[-2 \sigma ; 2 \sigma] \cup\left\{\rho_{\theta_{J_{+\sigma}}} ; \cdots ; \rho_{\theta_{1}}\right\} .
$$

Tool: The Stieltjes transform: for $z \in \mathbb{C} \backslash \mathbb{R}$, define $g_{N}(z)=\operatorname{tr}_{N}\left(G_{N}(z)\right)$ where $G_{N}(z)=\left(z I_{N}-M_{N}\right)^{-1}$ is the resolvent of M_{N}. We set $h_{N}(z)=\mathbb{E}\left[g_{N}(z)\right]$.

$$
g_{N}(z)=\int \frac{1}{z-x} d \mu_{M_{N}}(x) ; h_{\sigma}(z)=\int \frac{1}{z-x} d \mu_{s c}(x)
$$

Aim: Obtain a precise estimate

$$
\begin{equation*}
h_{\sigma}(z)-h_{N}(z)+\frac{1}{N} L_{\sigma}(z)=O\left(\frac{1}{N^{2}}\right) \tag{2}
\end{equation*}
$$

where L_{σ} is the Stieltjes transform of a distribution η with compact support in K_{σ}.
With the help of the inverse Stieltjes transform,
$\mathbb{E}\left[\operatorname{tr}_{N}\left(\varphi\left(M_{N}\right)\right)\right]=\int \varphi(x) d \mu_{s c}(x)+\frac{1}{N} \int \varphi(x) d \eta(x)+O\left(\frac{1}{N^{2}}\right)$,
for φ smooth with compact support;
and some variance estimates, we deduce from (2)

$$
\operatorname{tr}_{N} 1_{C_{K_{\sigma}}^{\varepsilon}\left(\theta_{1}, \cdots, \theta_{J}\right)}\left(M_{N}\right)=O\left(1 / N^{\frac{4}{3}}\right) \text { a.s. }
$$

and therefore the inclusion of the spectrum (1).

Proof of (2):

1) The Gaussian Case:

- The Gaussian integration by parts formula:
$\phi: \mathbb{R} \rightarrow \mathbb{C}, \xi$ standard Gaussian

$$
\begin{gathered}
\mathbb{E}(\xi \phi(\xi))=\mathbb{E}\left(\phi^{\prime}(\xi)\right) \\
\Phi: \mathcal{H}_{n}(\mathbb{C}) \rightarrow \mathbb{C}, H \in \mathcal{H}_{n}(\mathbb{C}), \\
\frac{N}{\sigma^{2}} \mathbb{E}\left[\operatorname{Tr}\left(X_{N} H\right) \Phi\left(X_{N}\right)\right]=\mathbb{E}\left[\Phi^{\prime}\left(X_{N}\right) \cdot H\right]
\end{gathered}
$$

Apply it for $\Phi\left(X_{N}\right)=\left[\left(z I_{N}-X_{N}-A_{N}\right)^{-1}\right]_{k l}=$ $G_{N}(z)_{k l}$ and $H=E_{k l}$; then sum over k and l.
$\rightarrow \sigma^{2} \mathbb{E}\left[g_{N}^{2}(z)\right]-z \mathbb{E}\left[g_{N}(z)\right]+1+\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(G_{N}(z) A_{N}\right)\right]=0$
$\rightarrow \sigma^{2} h_{N}^{2}(z)-z h_{N}(z)+1+\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(G_{N}(z) A_{N}\right)\right]=O\left(\frac{1}{N^{2}}\right)$
Recall that $\sigma^{2} h_{\sigma}^{2}(z)-z h_{\sigma}(z)+1=0$.

Estimate for $\mathbb{E}\left[\operatorname{Tr}\left(G_{N}(z) A_{N}\right)\right]$:
$A_{N}=U^{*} \Lambda U$ where Λ is a diagonal matrix with entries $\lambda_{i} \neq 0$ for $i \leq r, \lambda_{i}=0, i>r$. We can show using

- The Gaussian integration by parts formula
- Some variance estimates

$$
\text { - } h_{N}(z)=h_{\sigma}(z)+O\left(\frac{1}{N}\right)
$$

the estimate

$$
\mathbb{E}\left[\operatorname{Tr}\left(G_{N}(z) A_{N}\right)\right]=\sum_{i=1}^{r} \frac{\lambda_{i}}{z-\lambda_{i}-\sigma^{2} h_{\sigma}(z)}+O\left(\frac{1}{N}\right)
$$

Set

$$
R_{G}^{A_{N}}(z)=\sum_{i=1}^{r} \frac{\lambda_{i}}{z-\lambda_{i}-\sigma^{2} h_{\sigma}(z)}=\sum_{\theta_{i} \neq 0} k_{i} \frac{\theta_{i}}{z-\theta_{i}-\sigma^{2} h_{\sigma}(z)} .
$$

Then,

$$
\sigma^{2} h_{N}^{2}(z)-z h_{N}(z)+1+\frac{1}{N} R_{G}^{A_{N}}(z)=O\left(\frac{1}{N^{2}}\right)
$$

leading to

$$
h_{N}(z)-h_{\sigma}(z)+\frac{1}{N} L(z)=O\left(\frac{1}{N^{2}}\right)
$$

where $L(z)=h_{\sigma}^{-1}(z) \mathbb{E}\left[(z-s c)^{-2}\right] R_{G}^{A_{N}}(z)$.

Question:

- L Stieltjes transform of a distribution?
- Support of this distribution?
\longleftrightarrow Analyticity of L (+ conditions); set of singular points.
If $\left|\theta_{i}\right|>\sigma, x \in \mathbb{R} \backslash[-2 \sigma, 2 \sigma]$,

$$
x-\theta_{i}-\sigma^{2} h_{\sigma}(x)=0 \Longleftrightarrow x=\theta_{i}+\frac{\sigma^{2}}{\theta_{i}}:=\rho_{\theta_{i}}
$$

2) The non Gaussian case

GIP replaced by: (Khorunzhy, Khoruzhenko, Pastur)
Lemma 1 Let ξ be a real-valued $r v$ such that $\mathbb{E}\left(|\xi|^{p+2}\right)<$ ∞. Let $\phi: \mathbb{R} \rightarrow \mathbb{C}$ such that the first $p+1$ derivatives are continuous and bounded. Then,

$$
\mathbb{E}(\xi \phi(\xi))=\sum_{a=0}^{p} \frac{\kappa_{a+1}}{a!} \mathbb{E}\left(\phi^{(a)}(\xi)\right)+\epsilon
$$

where κ_{a} are the cumulants of $\xi,|\epsilon| \leq C \sup _{t}\left|\phi^{(p+1)}(t)\right| \mathbb{E}\left(|\xi|^{p+2}\right)$.
Apply to $\xi=\operatorname{Re}\left(\left(X_{N}\right)_{i j}\right), \operatorname{Im}\left(\left(X_{N}\right)_{i j}\right),\left(X_{N}\right)_{i i}$, the odd cumulants vanish (μ symmetric). One must consider the third derivative of $\Phi=\left(G_{N}(z)\right)_{k l}$.

One obtains:

$$
\sigma^{2} h_{N}^{2}(z)-z h_{N}(z)+1+\frac{1}{N} R(z)=O\left(\frac{1}{N^{2}}\right)
$$

where $R(z)=R_{G}^{A_{N}}(z)+\kappa_{4} R_{\Phi^{\prime \prime \prime}}^{0}(z)$.
$R_{\Phi^{\prime \prime \prime}}^{0}(z)$ is analytic on $\mathbb{C} \backslash[-2 \sigma, 2 \sigma]$.

