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Introduction 1The Problem

Let

E :=
1

K
min
x∈X

x†Jx

with x ∈ C
K and J ∈ C

K×K.

Example 1:
X = {x : x†x = K} =⇒ E = min λ(J )

for Wishart matrix −→ [1−√α]
2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1−
√

πα
2

]2

+
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Introduction 1The Problem

Let

E :=
1

K
min
x∈X

x†Jx

with x ∈ C
K and J ∈ C

K×K.

Example 1:
X = {x : x†x = K} =⇒ E = min λ(J )

for Wigner matrix −→ −2

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wigner matrix −→≈ − 2√
π

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wigner matrix −→≈ −√π
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Introduction 2

Wishart Matrix
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K/N

E

x†x = K |x|2 = 1 x2 = 1 : K = 15,∞
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Application 3

The Gaussian Vector Channel

Let the received vector be given by

r = Ht + n

where

• t is the transmitted vector

• n is uncorrelated (white) Gaussian noise

•H is a coupling matrix accounting for crosstalk

In many applications, e.g. antenna arrays, code-division multiple-access, the coupling
matrix is modelled as a random matrix with independent identically distributed entries
(i.i.d. model).

Crosstalk can be processed either at receiver or transmitter
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Application 4

Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device one would
prefer to have the complexity at the transmitter.

E.g. let the transmitted vector be

t = H†(HH†)−1x

where x is the data to be sent.

Then,
r = x + n.

No crosstalk anymore due to channel inversion.
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Application 5

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

x†
(

HH†)−1
x > x†x.

In particular, let

• α = K
N ≤ 1;

• the entries of H are i.i.d. with variance 1/N .

Then, for fixed aspect ratio α

lim
K→∞

x†
(

HH†)−1
x

x†x
=

1

1− α

with probability 1.
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Application 6

Tomlinson-Harashima Precoding
Tomlinson ’71, Harashima & Miyakawa ’72

Choose that representation that gives the smallest transmit power.
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Application 6

Tomlinson-Harashima Precoding
Tomlinson ’71, Harashima & Miyakawa ’72

Instead of representing the logical ”0” by +1, we present it by any element of the set
{. . . ,−7,−3, +1, +5, . . . } = 4Z + 1. Correspondingly, the logical ”1” is represented
by any element of the set 4Z− 1.

Choose that representation that gives the smallest transmit power.
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Application 7

Generalized TH Precoding

Let B0 and B1 denote the sets presenting 0 and 1, resp.

Let (s1, s2, s3, . . . , sK) denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

E = 1
K min

x∈X
x†Jx

with
X = Bs1 × Bs2 × · · · × BsK

and
J = (HH†)−1.
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Replica Calculations 8

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground
state energy) of a quadratic Hamiltonian.

The transmitted power is written as a zero temperature limit

E = − lim
β→∞

1

βK
log
∑

x∈X
e−βK Tr(Jxx†)

−→ − lim
β→∞

lim
K→∞

E
J

1

βK
log
∑

x∈X
e−βK Tr(Jxx†)

with 1
β

denoting temperature.
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Replica Calculations 9

Free Fourier Transform
We want

lim
K→∞

1

K
E
J

log
∑

x∈X
e−βK Tr(Jxx†).

We know

lim
K→∞

1

K
log E

J
e−K Tr JP = −

n
∑

a=1

λa(P )
∫

0

RJ(−w)dw.

We would like to exchange expectation and logarithm:

E
X

log X = lim
n→0

1

n
log E

X
Xn.
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Replica Calculations 10

Replica Continuity
We want

lim
K→∞

1

K
E
J

log
∑

x∈X
e−βK Tr(Jxx†) = lim

K→∞
lim
n→0

1

nK
log E

J

(

∑

x∈X
e−βK Tr(Jxx†)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n
∏

a=1

∑

xa∈X
e
−βK Tr

(

Jxax
†
a

)

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
−K Tr

(

Jβ
n
∑

a=1
xax

†
a

)

= − lim
n→0

1

n

n
∑

a=1

E
Q

βλa(Q)
∫

0

RJ(−w)dw

with

Q :=
n
∑

a=1

xax
†
a.
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log E
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−K Tr

(
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xax

†
a

)
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n→0

1

n

n
∑

a=1

E
Q

βλa(Q)
∫

0

RJ(−w)dw

with

Qab :=
1

K
x†axb.
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Replica Calculations 11

Replica Symmetry

Q :=

















q + χ
β q · · · q q

q q + χ
β

. . . q q
... . . . . . . . . . ...

q q . . . q + χ
β q

q q · · · q q + χ
β

















with some macroscopic parameters q and χ.

This is the most critical step. In general, the structure of Q is more complicated.
Generalizations are called replica symmetry breaking (RSB).
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Replica Calculations 12

Main Result

Let P(s) denote the limit of the empirical distribution of the information symbols
s1, s2, . . . , sK as K →∞. Let q and χ be the simultaneous solutions to

q =

∫∫

argmin
x∈Bs

2
∣

∣

∣
z
√

2qR′(−χ)− 2xR(−χ)
∣

∣

∣
Dz dP(s)

χ =
1

√

2qR′(−χ)

∫∫

argmin
x∈Bs

∣

∣

∣
z
√

2qR′(−χ)− 2xR(−χ)
∣

∣

∣
zDz dP(s)

where Dz = exp(−z2/2)dz/
√

2π, R(·) is the R-transform of the limiting eigenvalue
spectrum of J , and 0 < χ <∞.

Then, replica symmetry implies

1

K
min
x∈X

x†Jx→ q
∂

∂χ
χR(−χ)

as K →∞.
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Replica Calculations 13

Some R-Transforms

I : R(w) = 1

HH† : R(w) =
1

1− αw
Marchenko-Pastur (MP) law

(HH†)−1 : R(w) =
1− α−

√

(1− α)2 − 4αw

2αw
inv. MP

U + U † : R(w) =
−1 +

√
1 + 4w2

w
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Examples 14

Inv. MP with Odd Integer Lattice (TH Precoding)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2  
0

2

4

6

8

10

12

14

16

18

20

α

E
 [d

B
]

Let J = (HH†)−1 and χ <∞: E =
c21+

L
∑

i=2
(c2i−c2i−1)Q

(

ci+ci−1√
2αE

)

1−α+
√

α
πE

L
∑

i=2
(ci−ci−1) exp

(

−(ci+ci−1)2

4αE

)

L = 1, 2, 3, 6, 100
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Examples 15

Convex Relaxation

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

0
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3
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α

E
 [d

B
]

←− 
onv. relaxation

B0 = [+1; +∞)

B1 = (−∞;−1]

Both sets are
convex.

⇓
Convex optimi-
zation,
but small gains.
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Examples 16

Odd Integer Quadrature Lattice
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Examples 16

Odd Integer Quadrature Lattice

Same energy per bit Eb =
E

log2 |S|
in both cases.
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Examples 17

Complex TH Precoding

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

E
b [d

B
]

α

L = 1, 2, 3, 6, 100

Eb = E
2 = 4

3 for L→∞.
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Examples 18

Complex Convex Relaxation

. . . allows for convex programming.
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Examples 19

Complex Convex Relaxation (cont’d)

0 0.2 0.4 0.6 0.8 1
0 

4 

8 

12 

16 

20

α

E

. . . achieves part of the gain of TH precoding.
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An Invariance Result of Inverse MP Kernels 20

Complex Semi-Discrete Set

The imaginary part is purely used to reduce transmit energy.
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An Invariance Result of Inverse MP Kernels 21

Complex Semi-Discrete Set (solid lines)

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

α

E
b [d

B
]

L = 1, 2, 3, 6

Eb = 4
3 for L→∞.

Convex opt. for L = 1.
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An Invariance Result of Inverse MP Kernels 22

A Fake Gain

The inverse MP kernel has the following property:

Let H and H′ be random matrices of size K×N and K ′×N respec-
tively, with K ′ > K and with i.i.d. entries of zero mean and variance
1/N . Then,

min
x∈X

x†(HH†)−1x

K
− min

x∈X×CK′−K

x†(H′H′†)−1x

K
−→ 0.

The redundant symbols serve no purpose.
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Open Problems 23

Wanted

lim
K→∞

1

K
log E

A,B
e−K Tr APBP = f {RA(· · · ), RB(·), . . . , } .

Rigorous or Hand-Waving
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Why We Need Analytical Results in Engineering 24

Dis
overing Antimatter

What happens if the MP-law has a mass point at zero (K > N)?

Can we precode without interference?

The precoder produces

lim
ǫ→0

argmin
x∈X

x†(HH† + ǫI)−1x

K

The received signal becomes

r = lim
ǫ→0

HH†(HH† + ǫI)−1x + n.

If the energy is finite, there is no interference.
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