Minimization of Quadratic Forms in Wireless Communications

Ralf R. Müller
Department of Electronics \& Telecommunications
Norwegian University of Science \& Technology, Trondheim, Norway
mueller@iet.ntnu.no
Dongning Guo
Department of Electrical Engineering \& Computer Science
Northwestern University, Evanston, IL, U.S.A.
dguo@northwestern.edu
Aris L. Moustakas
Physics Department
National \& Capodistrian University of Athens, Greece
arislm@phys.uoa.gr

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad E=\min \lambda(\boldsymbol{J})
$$

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\begin{array}{ll}
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad & E=\min \lambda(\boldsymbol{J}) \\
& \text { for Wishart matrix } \longrightarrow[1-\sqrt{\alpha}]_{+}^{2}
\end{array}
$$

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\begin{aligned}
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \Longrightarrow \quad & E=\min \lambda(\boldsymbol{J}) \\
& \text { for Wishart matrix } \longrightarrow[1-\sqrt{\alpha}]_{+}^{2}
\end{aligned}
$$

Example 2:

$$
\mathcal{X}=\left\{x: x^{2}=1\right\}^{K} \quad \Longrightarrow \quad ? ? ?
$$

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\begin{aligned}
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \Longrightarrow \quad & E=\min \lambda(\boldsymbol{J}) \\
& \text { for Wishart matrix } \longrightarrow[1-\sqrt{\alpha}]_{+}^{2}
\end{aligned}
$$

Example 2:

$$
\mathcal{X}=\left\{x: x^{2}=1\right\}^{K} \quad \Longrightarrow \quad ? ? ?
$$

Example 3:

$$
\mathcal{X}=\left\{x:|x|^{2}=1\right\}^{K} \quad \Longrightarrow \quad ? ? ?
$$

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\begin{aligned}
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \Longrightarrow \quad & E=\min \lambda(\boldsymbol{J}) \\
& \text { for Wishart matrix } \longrightarrow[1-\sqrt{\alpha}]_{+}^{2}
\end{aligned}
$$

Example 2:

$$
\mathcal{X}=\left\{x: x^{2}=1\right\}^{K} \quad \Longrightarrow \quad ? ? ?
$$

$$
\text { for Wishart matrix } \longrightarrow \approx\left[1-\frac{\alpha}{\sqrt{\pi}}\right]_{+}^{2}
$$

Example 3:

$$
\begin{aligned}
\mathcal{X}=\left\{x:|x|^{2}=1\right\}^{K} & \Longrightarrow \quad \text { ??? } \\
& \text { for Wishart matrix } \longrightarrow
\end{aligned} \quad \approx\left[1-\frac{\sqrt{\pi} \alpha}{2}\right]_{+}^{2}
$$

The Problem

Let

$$
E:=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

Example 1:

$$
\begin{aligned}
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad E=\min \lambda(\boldsymbol{J}) \\
\quad \text { for Wigner matrix } \longrightarrow-2
\end{aligned}
$$

Example 2:

$$
\mathcal{X}=\left\{x: x^{2}=1\right\}^{K} \quad \Longrightarrow \quad ? ? ?
$$

$$
\text { for Wigner matrix } \longrightarrow \approx-\frac{2}{\sqrt{\pi}}
$$

Example 3:

$$
\begin{aligned}
\mathcal{X}=\left\{x:|x|^{2}=1\right\}^{K} \Longrightarrow & \text { ??? } \\
& \text { for Wigner matrix } \longrightarrow \approx-\sqrt{\pi}
\end{aligned}
$$

Wishart Matrix

The Gaussian Vector Channel

Let the received vector be given by

$$
\boldsymbol{r}=\boldsymbol{H} \boldsymbol{t}+\boldsymbol{n}
$$

where

- t is the transmitted vector
- \boldsymbol{n} is uncorrelated (white) Gaussian noise
- \boldsymbol{H} is a coupling matrix accounting for crosstalk

In many applications, e.g. antenna arrays, code-division multiple-access, the coupling matrix is modelled as a random matrix with independent identically distributed entries (i.i.d. model).

Crosstalk can be processed either at receiver or transmitter

Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device one would prefer to have the complexity at the transmitter.
E.g. let the transmitted vector be

$$
\boldsymbol{t}=\boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}
$$

where \boldsymbol{x} is the data to be sent.

Then,

$$
\boldsymbol{r}=\boldsymbol{x}+\boldsymbol{n} .
$$

No crosstalk anymore due to channel inversion.

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

$$
\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}>\boldsymbol{x}^{\dagger} \boldsymbol{x}
$$

In particular, let

- $\alpha=\frac{K}{N} \leq 1$;
- the entries of \boldsymbol{H} are i.i.d. with variance $1 / N$.

Then, for fixed aspect ratio α

$$
\lim _{K \rightarrow \infty} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}}{\boldsymbol{x}^{\dagger} \boldsymbol{x}}=\frac{1}{1-\alpha}
$$

with probability 1.

Tomlinson-Harashima Precoding

Tomlinson '71, Harashima \& Miyakawa '72

Tomlinson-Harashima Precoding

Tomlinson '71, Harashima \& Miyakawa '72

Tomlinson-Harashima Precoding

Tomlinson '71; Harashima \& Miyakawa '72

Tomlinson-Harashima Precoding

Tomlinson '71, Harashima \& Miyakawa '72

Instead of representing the logical " 0 " by +1 , we present it by any element of the set $\{\ldots,-7,-3,+1,+5, \ldots\}=4 \mathbb{Z}+1$. Correspondingly, the logical " 1 " is represented by any element of the set $4 \mathbb{Z}-1$.

Choose that representation that gives the smallest transmit power.

Generalized TH Precoding

Let \mathcal{B}_{0} and \mathcal{B}_{1} denote the sets presenting 0 and 1 , resp.
Let $\left(s_{1}, s_{2}, s_{3}, \ldots, s_{K}\right)$ denote the data to be transmitted.
Then, the transmitted energy per data symbol is given by

$$
E=\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with

$$
\mathcal{X}=\mathcal{B}_{s_{1}} \times \mathcal{B}_{s_{2}} \times \cdots \times \mathcal{B}_{s_{K}}
$$

and

$$
\boldsymbol{J}=\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} .
$$

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground state energy) of a quadratic Hamiltonian.

The transmitted power is written as a zero temperature limit

$$
E=-\lim _{\beta \rightarrow \infty} \frac{1}{\beta K} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J x x ^ { \dagger }}\right)}
$$

with $\frac{1}{\beta}$ denoting temperature.

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground state energy) of a quadratic Hamiltonian.

The transmitted power is written as a zero temperature limit

$$
\begin{aligned}
E & =-\lim _{\beta \rightarrow \infty} \frac{1}{\beta K} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)} \\
& \longrightarrow-\lim _{\beta \rightarrow \infty} \lim _{K \rightarrow \infty} \mathrm{E} \frac{1}{\beta K} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
\end{aligned}
$$

with $\frac{1}{\beta}$ denoting temperature.

Free Fourier Transform

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
$$

Free Fourier Transform

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
$$

We know

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \mathrm{e}^{-K \operatorname{Tr} \boldsymbol{J} \boldsymbol{P}}=-\sum_{a=1}^{n} \int_{0}^{\lambda_{a}(\boldsymbol{P})} R_{\boldsymbol{J}}(-w) \mathrm{d} w .
$$

Free Fourier Transform

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
$$

We know

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \mathrm{e}^{-K \operatorname{Tr} \boldsymbol{J} \boldsymbol{P}}=-\sum_{a=1}^{n} \int_{0}^{\lambda_{a}(\boldsymbol{P})} R_{\boldsymbol{J}}(-w) \mathrm{d} w .
$$

We would like to exchange expectation and logarithm:

$$
\underset{X}{\mathrm{E}} \log X=\lim _{n \rightarrow 0} \frac{1}{n} \log \underset{X}{\mathrm{E}} X^{n}
$$

Replica Continuity

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}}\left(\sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}\right)^{n}
$$

Replica Continuity

We want

$$
\begin{aligned}
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)} & =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}}\left(\sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}\right)^{n} \\
& =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \prod_{a=1}^{n} \sum_{\boldsymbol{x}_{a} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x}_{a} \boldsymbol{x}_{a}^{\dagger}\right)}
\end{aligned}
$$

Replica Continuity

We want

$$
\begin{aligned}
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)} & =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}}\left(\sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}\right)^{n} \\
& =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \prod_{a=1}^{n} \sum_{\boldsymbol{x}_{a} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x}_{a} \boldsymbol{x}_{a}^{\dagger}\right)} \\
& =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \sum_{\boldsymbol{x}_{1} \in \mathcal{X}} \cdots \sum_{\boldsymbol{x}_{n} \in \mathcal{X}} \mathrm{e}^{-K \operatorname{Tr}\left(\boldsymbol{J} \beta \sum_{a=1}^{n} \boldsymbol{x}_{a} \boldsymbol{x}_{a}^{\dagger}\right)}
\end{aligned}
$$

Replica Continuity

We want

$$
\begin{aligned}
\lim _{K \rightarrow \infty} \frac{1}{K} \underset{\boldsymbol{J}}{\mathrm{E}} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)} & =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}}\left(\sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}\right)^{n} \\
& =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \prod_{a=1}^{n} \sum_{\boldsymbol{x}_{a} \in \mathcal{X}} \mathrm{e}^{-\beta K \operatorname{Tr}\left(\boldsymbol{J} \boldsymbol{x}_{a} \boldsymbol{x}_{a}^{\dagger}\right)} \\
& =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{\boldsymbol{J}}{\mathrm{E}} \sum_{x_{1} \in \mathcal{X}} \cdots \sum_{\boldsymbol{x}_{n} \in \mathcal{X}} \mathrm{e}^{-K \operatorname{Tr}\left(\boldsymbol{J} \beta \sum_{a=1}^{n} \boldsymbol{x}_{a} \boldsymbol{x}_{a}^{\dagger}\right)} \\
& =-\lim _{n \rightarrow 0} \frac{1}{n} \sum_{a=1}^{n} \underset{\boldsymbol{Q}}{\beta \lambda_{a}} \int_{0}^{\mathrm{E}} \boldsymbol{Q}_{\boldsymbol{J}}(-w) \mathrm{d} w
\end{aligned}
$$

with

$$
Q_{a b}:=\frac{1}{K} \boldsymbol{x}_{a}^{\dagger} \boldsymbol{x}_{b} .
$$

Replica Symmetry

$$
\boldsymbol{Q}:=\left[\begin{array}{ccccc}
q+\frac{\chi}{\beta} & q & \cdots & q & q \\
q & q+\frac{\chi}{\beta} & \cdots & q & q \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
q & q & \ddots & q+\frac{\chi}{\beta} & q \\
q & q & \cdots & q & q+\frac{\chi}{\beta}
\end{array}\right]
$$

with some macroscopic parameters q and χ.

This is the most critical step. In general, the structure of Q is more complicated. Generalizations are called replica symmetry breaking (RSB).

Main Result

Let $\mathrm{P}(s)$ denote the limit of the empirical distribution of the information symbols $s_{1}, s_{2}, \ldots, s_{K}$ as $K \rightarrow \infty$. Let q and χ be the simultaneous solutions to

$$
\begin{aligned}
q & =\iint \underset{x \in \mathcal{B}_{s}}{\operatorname{argmin}}\left|z \sqrt{2 q R^{\prime}(-\chi)}-2 x R(-\chi)\right| \mathrm{D} z \mathrm{dP}(s) \\
\chi & =\frac{1}{\sqrt{2 q R^{\prime}(-\chi)}} \iint \underset{x \in \mathcal{B}_{s}}{\operatorname{argmin}}\left|z \sqrt{2 q R^{\prime}(-\chi)}-2 x R(-\chi)\right| z \mathrm{D} z \mathrm{dP}(s)
\end{aligned}
$$

where $\mathrm{D} z=\exp \left(-z^{2} / 2\right) \mathrm{d} z / \sqrt{2 \pi}, R(\cdot)$ is the R-transform of the limiting eigenvalue spectrum of \boldsymbol{J}, and $0<\chi<\infty$.
Then, replica symmetry implies

$$
\frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x} \rightarrow q \frac{\partial}{\partial \chi} \chi R(-\chi)
$$

as $K \rightarrow \infty$.

Some R-Transforms

$$
\begin{aligned}
\text { I : } & R(w)=1 \\
\boldsymbol{H} \boldsymbol{H}^{\dagger}: & R(w)=\frac{1}{1-\alpha w} \quad \text { Marchenko-Pastur (MP) law } \\
\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1}: & R(w)=\frac{1-\alpha-\sqrt{(1-\alpha)^{2}-4 \alpha w}}{2 \alpha w} \quad \text { inv. MP } \\
\boldsymbol{U}+\boldsymbol{U}^{\dagger}: & R(w)=\frac{-1+\sqrt{1+4 w^{2}}}{w}
\end{aligned}
$$

Inv. MP with Odd Integer Lattice (TH Precoding)

$$
\text { Let } \left.\boldsymbol{J}=\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \text { and } \chi<\infty: E=\frac{c_{1}^{2}+\sum_{i=2}^{L}\left(c_{i}^{2}-c_{i-1}^{2}\right) \mathrm{Q}\left(\frac{c_{i}+c_{i-1}}{\sqrt{2 \alpha E}}\right)}{1-\alpha+\sqrt{\frac{\alpha}{\pi E}} \sum_{i=2}^{L}\left(c_{i}-c_{i-1}\right) \exp \left(-\frac{\left(c_{i}+c_{i-1}\right)^{2}}{4 \alpha E}\right.}\right)
$$

Convex Relaxation

Odd Integer Quadrature Lattice

Odd Integer Quadrature Lattice

Complex TH Precoding

Complex Convex Relaxation

... allows for convex programming.

Complex Convex Relaxation (cont'd)

... achieves part of the gain of TH precoding.

Complex Semi-Discrete Set

The imaginary part is purely used to reduce transmit energy.

Complex Semi-Discrete Set (solid lines)

A Fake Gain

The inverse MP kernel has the following property:
Let \boldsymbol{H} and \boldsymbol{H}^{\prime} be random matrices of size $K \times N$ and $K^{\prime} \times N$ respectively, with $K^{\prime}>K$ and with i.i.d. entries of zero mean and variance $1 / N$. Then,

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}}{K}-\min _{\boldsymbol{x} \in \mathcal{X} \times \mathbb{C}^{K^{\prime}-K}} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H}^{\prime} \boldsymbol{H}^{\prime \dagger}\right)^{-1} \boldsymbol{x}}{K} \longrightarrow 0 .
$$

The redundant symbols serve no purpose.

Open Problems

Wanted

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log \underset{\boldsymbol{A}, \boldsymbol{B}}{\mathrm{E}} \mathrm{e}^{-K \operatorname{Tr} \boldsymbol{A P B} \boldsymbol{P}}=f\left\{R_{\boldsymbol{A}}(\cdots), R_{\boldsymbol{B}}(\cdot), \ldots,\right\}
$$

Rigorous or Hand-Waving

Discovering Antimatter

What happens if the MP-law has a mass point at zero $(K>N)$?
Can we precode without interference?

Discovering Antimatter

What happens if the MP-law has a mass point at zero $(K>N)$?
Can we precode without interference?
The precoder produces

$$
\lim _{\epsilon \rightarrow 0} \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{I}\right)^{-1} \boldsymbol{x}}{K}
$$

The received signal becomes

$$
\boldsymbol{r}=\lim _{\epsilon \rightarrow 0} \boldsymbol{H} \boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{I}\right)^{-1} \boldsymbol{x}+\boldsymbol{n}
$$

Discovering Antimatter

What happens if the MP-law has a mass point at zero $(K>N)$?
Can we precode without interference?
The precoder produces

$$
\lim _{\epsilon \rightarrow 0} \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{I}\right)^{-1} \boldsymbol{x}}{K}
$$

The received signal becomes

$$
\boldsymbol{r}=\lim _{\epsilon \rightarrow 0} \boldsymbol{H} \boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{I}\right)^{-1} \boldsymbol{x}+\boldsymbol{n}
$$

If the energy is finite, there is no interference.

