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Linear MDS codes in the Hamming space Fq
n

C - k-dimensional linear subspace (code) in Fq
n with distance d=n-k+1

Fix a basis G=(g1,g2,…,gk) ⊂ Fq
n

E⊂[n]={1,2,…,n} is independent if the projection of G on E is a basis

C is MDS iff every F, |F|=k is independent

Uu,v=|F⊂ [n]: |F|=u, rank(F)=v|

Rank function  



Linear MDS codes in the Hamming space Fq
n

Let As={x∈C : |x|=s}, then



Example (Niederreiter ‘86; Rosenbloom-Tsfasman ’97)

1. x=(********xj00000000) ∈ Fq
r

(xj≠0 & xj+1=…=xr=0) ⇔ |x|NRT=j

2. x=(x1,x2,….,xn) ,   xi = (x11,…,x1,r), i=1,2,…,n

|x|NRT=∑i=1
n |xi|NRT

Codes in the NRT space are important in the context of Monte-Carlo
integration [(t,m,s) nets], list decoding of RS codes, linear complexity of 
sequences, algebraic combinatorics.  

Poset metrics

q=5,r=3,n=5

x=(0,0,1; 0,4,0; 1,1,0; 2,0,1; 0,1,3)  y=(1,3,2; 0,3,2; 2,4,0; 0,0,0; 0,0,0)
d(x,y)=|x-y|NRT=|(4,2,4; 0,1,3; 4,2,0; 2,0,1; 0,1,3)|NRT= 14  



q=5,  r=8,  n=….
x=(3,0,1,2,1,0,0,0)

What matters is the rightmost coordinate in each block; so there is
a natural domination order within the block (xi,1,…,xj,…,xi,r):

1<2<…<j<…<r

NRT order = ∪i=1
n r-chains

Hamming order = an antichain of length n

|x|NRT=length(shortest chain that covers all the nonzeros of x)

Now let z∈ (Fq)n,r , then  |z|=∑ length(shortest chains within their blocks)

Chains and their unions are examples of “ideals” in partial orders.

Poset metrics



Let N be a finite set (of code’s coordinates) and P a partial order on N

A subset I is called an ideal in P if (j∈I) & (i<j) ⇒ i∈I

Poset metrics

Definition: (R.A. Brualdi, J.S. Graves, K.M. Lawrence, 1995) 
N=finite set; P a partial order

The poset norm of x∈Fq
|N| equals  |x|=min I⊂P: I covers x |I|

Notation:            |x|=hsupp(x)i

Poset codes were considered in a number of papers

J.Y. Huyn, H.K. Kim, D.Y. Oh, 2002-2009;
S. Dougherty, M. Skriganov, K. Shiromoto, 2002-2008.



Linear MDS codes in a Poset metric

Coordinates N=[n], partial order P

C - k-dimensional linear code in Fq
n is called MDS if d=n-k+1

(the Singleton bound is still proved by shortening)

A more convenient definition:
Given a vector y ∈ Fq

n, call the set

BI(y)={z∈Fq
n: |hsupp(y-z)i⊆ I}

an I-sphere around y. Then C is MDS if for any I,|I|=n-k the spheres
around the codewords tile the space Fq

n.

Example: Hamming space
I - (n-k)-subset of [n]

There are qn-k vectors in any BI(c); they are all distinct



Weight distribution of linear MDS poset codes has been found by

M. Skriganov, Coding theory and uniform distributions, 1999 (NRT case)

J.Y. Huyn and H.K. Kim, Maximum distance separable poset codes, 
Designs, Codes and Cryptography, 2008

We consider poset codes that are one away from the Singleton bound 
An interesting class among them are NearMDS codes

• Weight distribution

The main example is the NRT metric because ordered codes give rise 
to “uniform” point allocations (distributions) in the unit cube.

• We characterize distributions that correspond to NMDS codes. 



NearMDS codes in a Poset metric

dt – tth Generalized Hamming Weight

dt=min {hsupp(D)i: D is a t-dim subcode of C} 

Properties:
dt(C) · n-k+t,   t=1,…,k
∀ I∈P every (δ-t)-subset∈I of columns of H have rank ≥δ-t

etc.
(Standard properties)

A code with distance d=n-k is called NearMDS if d2=n-k+2



Distributions

Kn=[0,1]n unit cube
Partition each axis into qmi equal segments, 0·mi· r 

Elementary interval
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Distributions

Kn=[0,1]n unit cube
Partition each axis into qmi equal segments, 0·mi· r 



Kuipers/Niederreiter (1974); Beck/Chen (1987); Matoušek (1998)

M. Skriganov (1999)

Kn=[0,1]n unit cube

Elementary interval: take 0·ai< qmi

0·mi<r

A Distribution is a collection of points in Kn uniformly distributed with respect
to a partition into elementary intervals

Distributions



Distributions and uniform sampling

A collection of qk points in Kn such that every cell of a fixed volume
contains the same number of points
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Ordered Codes and Distributions

0   0   0 0   0   0 0   0   0

0   0   1 1   0   1 1   1   1

1   0   1 0   1   1 0   1   1

1   1   1 0   0   1 1   0   1

1   1   0 1   0   0 0   1   0

0   1   1 1   1   1 0   0   1

1   0   0 1   1   0 1   0   0

0   1   0 0   1   0 1   1   0

A linear code C in the NRT space (Fq)n,r gives rise to a uniform distribution
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OOAλ=1(t=3,n=3,r=3,q=2)
Ordered Orthogonal Array
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A linear code C in the NRT space (Fq)n,r gives rise to a uniform distribution

Ordered Codes and Distributions

.0   0   0 .0   0   0 .0   0   0
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Every 3 left-adjusted columns are 
surjective, equidistributed!

OOAλ=1(t=3,n=3,r=3,q=2)
Ordered Orthogonal Array

General results: Lawrence (1996), Mullen/Schmid (1996)



Ordered Codes and Distributions

A linear code C ∈ (Fq)n,r (NRT) gives rise to an OOA; to a distribution D∈Kn

Proposition (Skriganov)  MDS code C ⇔ optimal distribution D

Proposition: C is NMDS if and only if
(1) Any elementary box of volume q-(k-1) contains exactly q points
(2) There is an elementary box of the form

∏i=1
n[0,qmi]

and volume q-k that contains q points, and this is the smallest elementary
box with this property

Distributions are related to the concept of (t,m,s) nets (Niederreiter 1986)

Definition. A distribution of qk points is called optimal if every elementary 
box of volume q-k contains exactly one point.

If a1+…+an·k, then every box E in Kn contains exactly qk-a1-…-an points of an 
optimal distribution.



Duality

Definition: Let P≺ be a poset on the set N of coordinates. The dual poset
PÂ on N is obtained by reversing all the chains of P≺.

Example: Ordered Hamming space. x∈(Fq)n,r



Duality

Definition: Let P≺ be a poset on the set N of coordinates. The dual poset
PÂ on N is obtained by reversing all the chains of P≺.

C is a code in Fq
|N| w.r.t. P≺. Then the weights of its dual code C⊥ are

counted w.r.t. PÂ.

Example: Ordered Hamming space. The dual of a linear code is an OOA
of strength d-1.

To establish the link of NMDS codes and distributions, we need to work 
with a linear subspace C as with a code and an OOA at the same time.



Weight distributions of poset NMDS codes

Weight distribution of an NMDS poset code C depends on the number
of vectors associated with ideals of size d. 

AI,|{x∈C : hsupp(x)i=I}|
As=∑I: |I|=s AI

In an NMDS code C

Js:={I∈ P: |I|=s}
Ω(I)={maximal elements in I}



Weight distributions of poset NMDS codes

Case study: 

• Ordered Hamming space (Fq)n,r

• Hamming space, r=1 s=d,d+1,…,n

(known, Dodunekov/Landgev 1995)



THE END


