BIRS Workshop Banff, 030809

From codes to matroids and back

Thomas Britz*

^{*}University of New South Wales Funded by an ARC Discovery Grant

Definition (Whitney 1935).

 $M = (E, \mathcal{I})$ is a *matroid* iff

I1: $\emptyset \in \mathcal{I}$

I2: $I \subseteq J \in \mathcal{I} \Rightarrow I \in \mathcal{I}$

I3: $I, J \in \mathcal{I}$ and $|I| < |J| \Rightarrow I \cup e \in \mathcal{I}$ for some $e \in J - I$.

 $\mathcal{I} =$ the *independent sets* of M

Definition (Whitney 1935).

 $M = (E, \mathcal{I})$ is a *matroid* iff

I1: $\emptyset \in \mathcal{I}$

I2: $I \subseteq J \in \mathcal{I} \Rightarrow I \in \mathcal{I}$

I3: $I, J \in \mathcal{I}$ and $|I| < |J| \Rightarrow I \cup e \in \mathcal{I}$ for some $e \in J - I$.

 $\mathcal{I} =$ the independent sets of M

 $\mathcal{B} = bases = the maximally independent sets of M$

 $\mathcal{C} = circuits =$ the minimally dependent sets of M

 $\rho = rank \ function: \ \rho(T) = \max\{|I|: I \in \mathcal{I}, I \subseteq T\}$

Definition (Whitney 1935).

 $M = (E, \mathcal{I})$ is a *matroid* iff

I1: $\emptyset \in \mathcal{I}$

I2: $I \subseteq J \in \mathcal{I} \Rightarrow I \in \mathcal{I}$

I3: $I, J \in \mathcal{I}$ and $|I| < |J| \Rightarrow I \cup e \in \mathcal{I}$ for some $e \in J - I$.

 $\mathcal{I} =$ the independent sets of M

 $\mathcal{B} = \mathit{bases} = \mathsf{the} \; \mathit{maximally} \; \mathit{independent} \; \mathit{sets} \; \mathit{of} \; \mathit{M}$

 $\mathcal{C} = circuits = the minimally dependent sets of M$

 $\rho = rank \ function: \ \rho(T) = \max\{|I|: I \in \mathcal{I}, I \subseteq T\}$

$$\mathcal{I} = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\} \right\}$$

$$\mathcal{B} = \left\{ (1,2,4), (1,2,5), (1,2,4), (1,2,5), (2,2,4), (2,2,5) \right\}$$

$$\mathcal{B} = \big\{\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{2,3,4\},\{2,3,5\}\big\}$$

$$\mathcal{C} = \big\{\{1,2,3\},\{4,5\}\big\}$$

The *dual* of M: $M^* = (E, \mathcal{B}^*)$ where $\mathcal{B}^* = \{E - B : B \in \mathcal{B}(M)\}$

The *dual* of M: $M^* = (E, \mathcal{B}^*)$ where $\mathcal{B}^* = \{E - B : B \in \mathcal{B}(M)\}$

The *dual* of M: $M^* = (E, \mathcal{B}^*)$ where $\mathcal{B}^* = \{E - B : B \in \mathcal{B}(M)\}$

The *dual* of M: $M^* = (E, \mathcal{B}^*)$ where $\mathcal{B}^* = \{E - B : B \in \mathcal{B}(M)\}$

Deletion of M to a set T: $M|T=(T,\mathcal{I}')$ where $\mathcal{I}'=\{I:I\in\mathcal{I}(M),I\subseteq T\}$ Contraction of M to a set T: $M.T=(M^*|T)^*$

 $\mathbb{F}=\mathsf{a}$ field

$$E = \{e_1, \dots, e_n\}$$

A subspace $C \subseteq \mathbb{F}^E$ is also called a *linear code*.

 \mathbb{F} = a field

$$E = \{e_1, \dots, e_n\}$$

A subspace $C \subseteq \mathbb{F}^E$ is also called a *linear code*.

Hamming distance: $d(u,v) = \#\{e \in E : u_e \neq v_e\}$

Hamming weight: w(v) = d(v, 0)

Support: $S(v) = \{e \in E : v_e \neq 0\}$

$$\mathbb{F}$$
 = a field

$$E = \{e_1, \dots, e_n\}$$

A subspace $C \subseteq \mathbb{F}^E$ is also called a *linear code*.

Hamming distance: $d(u,v) = \#\{e \in E : u_e \neq v_e\}$

Hamming weight: w(v) = d(v, 0) w(v) = 3

Support: $S(v) = \{e \in E : v_e \neq 0\}$ $S(v) = \{e_2, e_3, e_5\}$

 $e_2 e_3 e_5$ v = (0 1 2 0 -1)

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

The *Tutte polynomial* $T_M(x,y)$ of M:

$$T_M(x,y) := \sum_{X \subseteq E} (x-1)^{\rho_M(E) - \rho_M(X)} (y-1)^{|X| - \rho_M(X)}$$

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Skorabogatov 1992: M_C does not determine the covering radius of C.

Britz & Rutherford 2005: M_C fails to determine other properties of C.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Skorabogatov 1992: M_C does *not* determine the covering radius of C.

Britz & Rutherford 2005: M_C fails to determine other properties of C.

MacWilliams 1963: The codeword weights of C determine those of C^{\perp} .

Britz 2005: An infinite class of MacWilliams-type results.

Britz & Shiromoto 2008: A general MacWilliams-type result for matroids.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Skorabogatov 1992: M_C does not determine the covering radius of C.

Britz & Rutherford 2005: M_C fails to determine other properties of C.

MacWilliams 1963: The codeword weights of C determine those of C^{\perp} .

Britz 2005: An infinite class of MacWilliams-type results.

Britz & Shiromoto 2008: A general MacWilliams-type result for matroids.

Britz & Shiromoto 2008: Matroid extensions of [Delsarte 1972, Duursma 2003].

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Skorabogatov 1992: M_C does not determine the covering radius of C.

Britz & Rutherford 2005: M_C fails to determine other properties of C.

MacWilliams 1963: The codeword weights of C determine those of C^{\perp} .

Britz 2005: An infinite class of MacWilliams-type results.

Britz & Shiromoto 2008: A general MacWilliams-type result for matroids.

Britz & Shiromoto 2008: Matroid extensions of [Delsarte 1972, Duursma 2003].

Assmus & Mattson 1969: t-designs from codeword supports of C.

Britz, Royle, & Shiromoto 2009: t-designs from matroids.

Definition: $M_C = M[G]$ is the *vector matroid* of C.

Crapo & Rota 1970: M_C determines the codeword supports of C.

Britz 2005: An infinite class of such results (eg. subcode supports).

Greene 1976: A small part of M_C determines the codeword weights of C.

Barg 1997, Britz 2007: This small part determines the subcode weights of C.

Britz: The Tutte polynomial and the subcode weights are equivalent.

Skorabogatov 1992: M_C does not determine the covering radius of C.

Britz & Rutherford 2005: M_C fails to determine other properties of C.

MacWilliams 1963: The codeword weights of C determine those of C^{\perp} .

Britz 2005: An infinite class of MacWilliams-type results.

Britz & Shiromoto 2008: A general MacWilliams-type result for matroids.

Britz & Shiromoto 2008: Matroid extensions of [Delsarte 1972, Duursma 2003].

Assmus & Mattson 1969: t-designs from codeword supports of C.

Britz, Royle, & Shiromoto 2009: t-designs from matroids.

Britz & Shiromoto 2008: t-designs from subcode supports of C.

 $C \subseteq \mathbb{F}_q^E = \text{a linear code}$

$$A_i^{(r)} = \# r$$
-dimensional subcodes $D \subseteq C$ with $|\bigcup_{v \in D} S(v)| = i$

The rth higher weight enumerator of C: $W_C^{(r)}(z) = \sum_{i=0}^n A_i^{(r)} z^i$

 $C\subseteq \mathbb{F}_q^E=$ a linear code $A_i^{(r)}=\ \#\ r\text{-dimensional subcodes}\ D\subseteq C\ \text{with}\ |\bigcup_{v\in D}S(v)|=i$

The rth higher weight enumerator of C: $W_C^{(r)}(z) = \sum_{i=0}^n A_i^{(r)} z^i$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} W_C^{(2)}(z) = 3z^5 + 3z^4 + z^3$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$3 \qquad \qquad 5 \qquad \qquad 5 \qquad \qquad 5 \qquad \qquad 4 \qquad \qquad 4 \qquad \qquad 4$$

$$C\subseteq \mathbb{F}_q^E=$$
 a linear code
$$A_i^{(r)}=\ \#\ r\text{-dimensional subcodes}\ D\subseteq C\ \text{with}\ |\bigcup_{v\in D}S(v)|=i$$

The rth higher weight enumerator of C: $W_C^{(r)}(z) = \sum_{i=0}^n A_i^{(r)} z^i$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} W_C^{(2)}(z) = 3z^5 + 3z^4 + z^3$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$3 \qquad \qquad 5 \qquad \qquad 5 \qquad \qquad 5 \qquad \qquad 4 \qquad \qquad 4$$

Problem: Calculate these enumerators for interesting linear codes

The extremal doubly-even, self-dual binary codes:

 $1\times[24,12,8] \text{ code (the extended binary Golay code)}$ $5\times[32,16,8] \text{ codes}$ $1\times[48,24,12] \text{ code}$ At most $1\times[72,36,16] \text{ code}$ At least $12579\times[40,20,8] \text{ codes}$ etc.

The extremal doubly-even, self-dual binary codes:

$$1 \times [24, 12, 8]$$
 code

$$5 \times [32, 16, 8]$$
 codes

$$1 \times [48, 24, 12]$$
 code

□ : [Dougherty and Gulliver 2001]

: [Milenkovic, Coffey and Compton 2003]

: missing

The *Tutte polynomial* of a matroid $M = (E, \mathcal{I})$:

$$T_M(x,y) = \sum_{X \subseteq E} (x-1)^{\rho_M(E) - \rho_M(X)} (y-1)^{|X| - \rho_M(X)}$$

The *Tutte polynomial* of a matroid $M = (E, \mathcal{I})$:

$$T_M(x,y) = \sum_{X \subseteq E} (x-1)^{\rho_M(E) - \rho_M(X)} (y-1)^{|X| - \rho_M(X)}$$

Theorem (Britz 2005) For a linear code $C \subseteq \mathbb{F}_q^E$ of dimension k,

$$W_C^{(r)}(z) = z^{n-k} (1-z)^k \sum_{i=0}^r \frac{(-1)^{r-i}}{[r]_r} q^{\binom{r-i}{2}} \begin{bmatrix} r \\ i \end{bmatrix} T_{M_C} \left(\frac{1+(q^i-1)z}{1-z}, \frac{1}{z} \right)$$

The *Tutte polynomial* of a matroid $M = (E, \mathcal{I})$:

$$T_M(x,y) = \sum_{X \subseteq E} (x-1)^{\rho_M(E) - \rho_M(X)} (y-1)^{|X| - \rho_M(X)}$$

Theorem (Britz 2005) For a linear code $C \subseteq \mathbb{F}_q^E$ of dimension k,

$$W_C^{(r)}(z) = z^{n-k} (1-z)^k \sum_{i=0}^r \frac{(-1)^{r-i}}{[r]_r} q^{\binom{r-i}{2}} \begin{bmatrix} r \\ i \end{bmatrix} T_{M_C} \left(\frac{1+(q^i-1)z}{1-z}, \frac{1}{z} \right)$$

$$T_{M}(x,y) = \begin{cases} y \, T_{M/e}(x,y), & \rho_{M}(e) = 0; \\ x \, T_{M/e}(x,y), & \rho_{M^*}(e) = 0; \\ T_{M\backslash e}(x,y) + T_{M/e}(x,y), & \text{otherwise.} \end{cases}$$

The extremal doubly-even, self-dual binary codes:

 $1 \times [24, 12, 8]$ code

 $5 \times [32, 16, 8]$ codes

 $1 \times [48, 24, 12]$ code

□ : [Dougherty and Gulliver 2001]

☐ : [Milenkovic, Coffey and Compton 2003]

: [Britz, Britz, Shiromoto, and Sørensen 2007]

The extremal doubly-even, self-dual binary codes:

1 sec $1 \times [24, 12, 8]$ code

40 sec $5 \times [32, 16, 8]$ codes

800 hours $1 \times [48, 24, 12]$ code

$$W_C^{(r)}(z)$$
:

☐ : [Dougherty and Gulliver 2001]

☐ : [Milenkovic, Coffey and Compton 2003]

: [Britz, Britz, Shiromoto, and Sørensen 2007]

Bond = minimal cutset

Bond = minimal cutset

 $b_1 = \text{minimal size of a bond}$

 $b_1 = \text{minimal size of a bond} = 2$

 $b_1 = \text{minimal size of a bond} = 2$

 $b_2 = \min$. # edges in 2 distinct bonds =

 $b_2 = \text{min.} \# \text{ edges in 2 distinct bonds} = 4$

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \text{min.} \# \text{ edges in 3 distinct bonds } B_1, B_2, B_3, B_3 \nsubseteq B_1 \cup B_2 = 5$

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \min$. # edges in 3 distinct bonds B_1, B_2, B_3 , $B_3 \nsubseteq B_1 \cup B_2 = 5$

 c_1 = minimal size of a cycle =

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \min$. # edges in 3 distinct bonds B_1, B_2, B_3 , $B_3 \nsubseteq B_1 \cup B_2 = 5$

 c_1 = minimal size of a cycle = 3

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3=$ min. # edges in 3 distinct bonds B_1,B_2,B_3 , $B_3\nsubseteq B_1\cup B_2=5$

 $c_1 = \text{minimal size of a cycle} = 3$

 $c_2 = \min$. # edges in 2 distinct cycles =

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \min$. # edges in 3 distinct bonds B_1, B_2, B_3 , $B_3 \nsubseteq B_1 \cup B_2 = 5$

 $c_1 = \text{minimal size of a cycle} = 3$

 $c_2 = \min$. # edges in 2 distinct cycles = 5

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \text{min.} \# \text{ edges in 3 distinct bonds } B_1, B_2, B_3, B_3 \nsubseteq B_1 \cup B_2 = 5$

 $c_1 = \text{minimal size of a cycle} = 3$

 $c_2 = \min$. # edges in 2 distinct cycles = 5

Set $U = \{b_1, b_2, b_3\} = \{2, 4, 5\}$ and $V = \{5 + 1 - c_2, 5 + 1 - c_1\} = \{1, 3\}.$

 $b_2 = \min$. # edges in 2 distinct bonds = 4

 $b_3 = \text{min.} \# \text{ edges in 3 distinct bonds } B_1, B_2, B_3, B_3 \nsubseteq B_1 \cup B_2 = 5$

 $c_1 = \text{minimal size of a cycle} = 3$

 $c_2 = \min$. # edges in 2 distinct cycles = 5

Set $U = \{b_1, b_2, b_3\} = \{2, 4, 5\}$ and $V = \{5 + 1 - c_2, 5 + 1 - c_1\} = \{1, 3\}.$

$$U \cup V = \{1, 2, 3, 4, 5\}$$
 and $U \cap V = \emptyset$

G = a multigraph on n edges

Define

k = # edges in a spanning forest of G

 $b_i = \min$. # edges in i bonds, none contained in the union of the others $c_j = \min$. # edges in j cycles, none contained in the union of the others

$$U = \{b_1, \dots, b_k\}$$

 $V = \{n+1-c_{n-k}, \dots, n+1-c_1\}.$

Britz 2007: $U \cup V = \{1, \dots, n\}$ and $U \cap V = \emptyset$.

M= a matroid of rank k on n elements

Define

 $f_i = \text{maximal size of an } i\text{-rank set in } M$

 f_i^* = maximal size of an j-rank set in M^*

$$U = \{f_0 + 1, \dots, f_{k-1} + 1\}$$

$$V = \{n - f_{n-k-1}^*, \dots, n - f_0^*\}.$$

Britz, Mayhew, Shiromoto: $U \cup V = \{1, ..., n\}$ and $U \cap V = \emptyset$.

M= a matroid of rank k on n elements

Define

 $f_i =$ maximal size of an i-rank set in M

 f_j^* = maximal size of an j-rank set in M^*

$$U = \{f_0 + 1, \dots, f_{k-1} + 1\}$$

$$V = \{n - f_{n-k-1}^*, \dots, n - f_0^*\}.$$

Britz, Mayhew, Shiromoto: $U \cup V = \{1, ..., n\}$ and $U \cap V = \emptyset$.

Britz, Mayhew, Shiromoto: Further generalizations.

Britz, Mayhew, Shiromoto: Applications to graphs, codes, modules, matchings.

M= a matroid of rank k on n elements

Define

 $f_i = \text{maximal size of an } i\text{-rank set in } M$

 f_j^* = maximal size of an j-rank set in M^*

$$U = \{f_0 + 1, \dots, f_{k-1} + 1\}$$

$$V = \{n - f_{n-k-1}^*, \dots, n - f_0^*\}.$$

Britz, Mayhew, Shiromoto: $U \cup V = \{1, ..., n\}$ and $U \cap V = \emptyset$.

Proof. Assume that the theorem is false.

Then
$$f_i+1=n-f_j^*$$
 for some $i,j.$ Let $A\subseteq E$ satisfy $|A|=f_j^*$ and $r_{M^*}(A)=j.$ Then $|E-A|=f_i+1$, so $r_M(E-A)\ge i+1.$ Since $|E-A|+r_{M^*}(A)-r(M^*)=r_M(E-A),$
$$-f_j^*+j+r\ge i+1.$$
 Similarly,
$$n-f_i+i-r\ge j+1.$$

Hence, $1 = n - f_i - f_i^* \ge 2$, a contradiction.

Thank you.