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Definition (Whitney 1935).
M = (E,T) is a matroid iff

I1: 0eZ
2: 1CJel = 1€l
I3: I,JeZand |I| < |J| = TUeeZ forsomeec J—1I.

7 = the independent sets of M

E={1 2 3 4 5} I:{(2),{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},
10100 {3,4},{3,5},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5} }
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I3: I,JeZand |I| < |J| = TUeeZ forsomeec J—1I.

7T = the independent sets of M

B = bases = the maximally independent sets of M
C = circuits = the minimally dependent sets of M
p = rank function: p(T) =max{|I|: I €Z, I CT}

T = {0, {1}, {2}, {3}, {4}, {5}. {1, 2}, {1, 3}, {1,4},{1,5}.{2,3},{2,4}, {2, 5},
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M = a matroid on the set E

The dual of M: M* = (E,B*) where B*={F - B : Be B(M)}

Deletion of M to aset T: M|T = (T,7") where Z' ={I : IeZ(M),ICT}

Contraction of M to a set T: M.T = (M*|T)*

AL o
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F = a field
E ={e1,...,en}

A subspace C C F¥ is also called a linear code.

Hamming distance: d(u,v) = #{e € E . ue 7 ve}

Hamming weight: w(v) = d(v,0) w(v) =3
Support: S(v) ={e€ E : ve # 0} S(v) = {ep,e3,e5}

€2 €3 €5
v=(01 2 0 —-1)
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C C FZ = a linear code

AZ@ = # r-dimensional subcodes D C C with |Uyep S(v)| =i

The rth higher weight enumerator of C'-
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for interesting linear codes



The extremal doubly-even, self-dual binary codes:

1 x [24,12,8] code (the extended binary Golay code)
5 x [32,16,8] codes
1 x [48,24,12] code
At most 1 x [72,36,16] code
At least 12579 x [40, 20, 8] codes

etc.



The extremal doubly-even, self-dual binary codes:

1 x [24,12,8] code
5 x [32,16,8] codes
1 x [48,24,12] code

UDOOoobodootd
000 0000ooooooo
- 000 0O00000000oo
we'(z): OO0 0000000ooogo
000D 0O00000000oo
[N 3
] 0] e

..............................................................................................................................

[J : [Dougherty and Gulliver 2001]
(] : [Milenkovic, Coffey and Compton 2003]

. 1. missing
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The Tutte polynomial of a matroid M = (E,T):

TM(:U,y) — Z (w — ]_)pM(E)_PM(X)(y _ 1)‘X‘—pM(X)
XCE

Theorem (Britz 2005) For a linear code C C FC}E of dimension k,

W((Jr)(z) = "R (1 — )P ET: (_1>T_Zq(rgi) H MC<1 Gl 1)27 1)

= Il ( 1—2 2z

¥ Trrye(@,y), py(e) = 0;
Tyi(e.y) = @ Ty oo, 0), prt-(e) = 0
\TM\e(:U,y) + TM/G(:U,y), otherwise.



The extremal doubly-even, self-dual binary codes:

Wi (2)

1 x [24,12,8] code
5 x [32,16,8] codes
1 x [48,24,12] code
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[ : [Dougherty and Gulliver 2001]
(] : [Milenkovic, Coffey and Compton 2003]

. [Britz, Britz, Shiromoto, and Sgrensen 2007]




The extremal doubly-even, self-dual binary codes:

1 sec 1 x [24,12,8] code
40 sec 5 x [32,16,8] codes
800 hours 1 x [48,24,12] code

oo ddn
No00JJ00000000o0ong
. 0Oo000000000000000
Wiz DO0000000000000n
0oO00000000000000
No000000000000nng
N

[ : [Dougherty and Gulliver 2001]
(] : [Milenkovic, Coffey and Compton 2003]
. [Britz, Britz, Shiromoto, and Sgrensen 2007]
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minimal size of a bond = 2
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minimal size of a bond = 2

S
=
[

bo = mMin. # edges in 2 distinct bonds = 4

bz = min. # edges in 3 distinct bonds B1,B5,B3, B3 £ BiUB, =5
c1 = minimal size of a cycle = 3

co = Mmin. # edges in 2 distinct cycles = 5

Set U = {b1,br,b3} = {2,4,5}
and V:{5—|—1—CQ,5—|—1—61}:{1,3}.



minimal size of a bond = 2

S
=
[

bo = mMin. # edges in 2 distinct bonds = 4

bz = min. # edges in 3 distinct bonds B1,B5,B3, B3 £ BiUB, =5
c1 = minimal size of a cycle = 3

co = Mmin. # edges in 2 distinct cycles = 5

Set U = {b1,bo,b3} = {2,4,5}
and V:{5—|—1—CQ,5—|—1—61}:{1,3}.

UuvV = {1,2,3,4,5} and UNV =0




G = a multigraph on n edges

Define
k — # edges in a spanning forest of G
b, = min. # edges in ¢ bonds, none contained in the union of the others

cj = min. # edges in j cycles, none contained in the union of the others

U:{bl,...,bk}
V={n+1l-c,t,....,n+1—cq}.

Britz 2007: UUV ={1,...,n} and UNV ={.



M = a matroid of rank k£ on n elements

Define
fi = maximal size of an ¢-rank set in M

f;.‘: maximal size of an j-rank set in M™

U={fo+1,...,fr_1+1}

V=_{n-f_, 1,....,n—f3}

Britz, Mayhew, Shiromoto: UUV ={1,...,n} and UNV = 0.
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Britz, Mayhew, Shiromoto: UUV ={1,...,n} and UNV = 0.
Britz, Mavyhew, Shiromoto: Further generalizations.

Britz, Mayhew, Shiromoto: Applications to graphs, codes, modules, matchings.



M = a matroid of rank k£ on n elements

Define
fi = maximal size of an ¢-rank set in M

f;.‘: maximal size of an j-rank set in M™

U={fo+1,...,fr_1+1}

V=_{n-f_, 1,....,n—f3}

Britz, Mayhew, Shiromoto: UuV ={1,...,n} and

Proof. Assume that the theorem is false.
Then fi+1=n— f7 for some ¢, .
Let A C FE satisfy |A| = f; and ra(A) = 3.
Then |[E—A|l=fi+1,s0ory(E—A)>i+ 1.
Since |[E — Al +ry(A) —r(M*) =ry(E — A),

—fi+i+r>i+1.
Similarly,

n—fit+i—r>j5+1.

UNV =§0.

Hence, 1 =n— f; — f;‘ > 2, a contradiction.



Thank_ 1you.



