Entropy functions, information inequalities, and polymatroids

František Matúš

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic E-mail: matus@utia.cas.cz

Applications of Matroid Theory and Combinatorial Optimization

Banff, August 6, 2009

DefinitionBasic observations
Limits of entropic functions
Polymatroids

$$\xi = (\xi_i)_{i \in N}$$
 ... a random vector indexed by a finite set N

$$\xi = (\xi_i)_{i \in N}$$
 ... a random vector indexed by a finite set N $\xi_I = (\xi_i)_{i \in I}$... a subvector of ξ , $I \subseteq N$

$$\xi = (\xi_i)_{i \in N}$$
 ... a random vector indexed by a finite set N $\xi_I = (\xi_i)_{i \in I}$... a subvector of ξ , $I \subseteq N$

The entropy function h_{ξ} of ξ maps each subset I of N to the Shannon entropy of ξ_I .

$$\xi = (\xi_i)_{i \in N}$$
 ... a random vector indexed by a finite set N $\xi_I = (\xi_i)_{i \in I}$... a subvector of ξ , $I \subseteq N$

The entropy function h_{ξ} of ξ maps each subset I of N to the Shannon entropy of ξ_I .

 $(h_{\xi}(I))_{I\subseteq N}$... an entropic point of Euclidean space $\mathbb{R}^{\mathcal{P}(N)}$, provided ξ takes a finite number of values

$$\xi = (\xi_i)_{i \in N}$$
 ... a random vector indexed by a finite set N $\xi_I = (\xi_i)_{i \in I}$... a subvector of ξ , $I \subseteq N$

The entropy function h_{ξ} of ξ maps each subset I of N to the Shannon entropy of ξ_I .

$$(h_{\xi}(I))_{I\subseteq N}$$
 ... an entropic point of Euclidean space $\mathbb{R}^{\mathcal{P}(N)}$, provided ξ takes a finite number of values

 H_N^{ent} ... the set of entropic points

Definition
Basic observations
Limits of entropic functions
Polymatroids

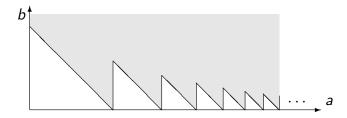
 H_N^{ent} ... a sophisticated set, unknown if $|N| \geqslant 3$

Definition
Basic observations
Limits of entropic functions
Polymatroids

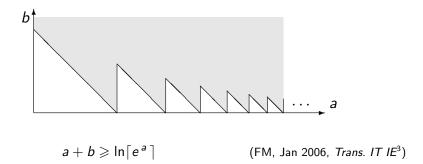
 $H_{\it N}^{\rm ent}$... a sophisticated set, unknown if $|\it N|\geqslant 3$

 \dots a supporting hyperplane may intersects H_N^{ent} in the set

 $H_N^{
m ent}$... a sophisticated set, unknown if $|N|\geqslant 3$... a supporting hyperplane may intersects $H_N^{
m ent}$ in the set



 $H_N^{
m ent}$... a sophisticated set, unknown if $|N|\geqslant 3$... a supporting hyperplane may intersects $H_N^{
m ent}$ in the set



Definition
Basic observations
Limits of entropic functions
Polymatroids

 $cl(H_N^{\text{ent}})$... the closure of H_N^{ent}

Definition
Basic observations
Limits of entropic functions
Polymatroids

 $cl(H_N^{\text{ent}})$... the closure of H_N^{ent} consists of almost entropic points

Definition
Basic observations
Limits of entropic functions
Polymatroids

```
cl(H_N^{\text{ent}}) ... the closure of H_N^{\text{ent}} consists of almost entropic points
```

 $cl(H_N^{\text{ent}})$ is a convex cone (Zhang & Yeung, Nov 1997, *Trans. IT IE*³)

Definition
Basic observations
Limits of entropic functions
Polymatroids

 $cl(H_N^{\text{ent}})$... the closure of H_N^{ent} consists of almost entropic points

 $cl(H_N^{\text{ent}})$ is a convex cone (Zhang & Yeung, Nov 1997, Trans. IT IE^3)

... not depending on the base of logarithms in $-\sum_{x} p(x) \ln p(x)$

$$cl(H_N^{\text{ent}})$$
 ... the closure of H_N^{ent} consists of almost entropic points

$$cl(H_N^{\text{ent}})$$
 is a convex cone (Zhang & Yeung, Nov 1997, *Trans. IT IE*³)

... not depending on the base of logarithms in $-\sum_{x} p(x) \ln p(x)$

$$ri(cl(H_N^{\text{ent}})) \subseteq H_N^{\text{ent}}$$
 (FM, Jan 07, Trans. IT IE^3)

$$cl(H_N^{\text{ent}})$$
 ... the closure of H_N^{ent} consists of almost entropic points

$$cl(H_N^{\text{ent}})$$
 is a convex cone (Zhang & Yeung, Nov 1997, *Trans. IT IE*³)

... not depending on the base of logarithms in $-\sum_{x} p(x) \ln p(x)$

$$ri(cl(H_N^{\text{ent}})) \subseteq H_N^{\text{ent}}$$
 (FM, Jan 07, Trans. IT IE³)

... $H_N^{\rm ent}$ and $cl(H_N^{\rm ent})$ differ only on the boundary of the cone

Definition
Basic observations
Limits of entropic functions
Polymatroids

(N,g) ... polymatroid, sits on the ground set N and has

Definition
Basic observations
Limits of entropic functions
Polymatroids

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g:\mathcal{P}(N)\to [0,+\infty)$ satisfying

Definition
Basic observations
Limits of entropic functions
Polymatroids

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N)\to [0,+\infty)$ satisfying $g(\emptyset)=0$

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N) \to [0,+\infty)$ satisfying $g(\emptyset)=0$ $g(I)\leqslant g(J)$ for $I\subseteq J$

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N) \to [0,+\infty)$ satisfying $g(\emptyset) = 0$ $g(I) \leqslant g(J)$ for $I \subseteq J$ $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J)$ for $I,J \subseteq N$.

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N) \to [0,+\infty)$ satisfying $g(\emptyset) = 0$ $g(I) \leqslant g(J)$ for $I \subseteq J$ $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J)$ for $I,J \subseteq N$. It is a matroid if $g(I) \in \mathbb{Z}$ and $g(I) \leqslant |I|$ for $I \subseteq N$.

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N)\to [0,+\infty)$ satisfying $g(\emptyset)=0$ $g(I)\leqslant g(J)$ for $I\subseteq J$ $g(I)+g(J)\geqslant g(I\cup J)+g(I\cap J)$ for $I,J\subseteq N$. It is a matroid if $g(I)\in\mathbb{Z}$ and $g(I)\leqslant |I|$ for $I\subseteq N$. $H_N\subseteq\mathbb{R}^{\mathcal{P}(N)}$... the rank functions sitting on N form

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g\colon \mathcal{P}(N) \to [0,+\infty)$ satisfying $g(\emptyset) = 0$ $g(I) \leqslant g(J)$ for $I \subseteq J$ $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J)$ for $I,J \subseteq N$.

It is a matroid if $g(I) \in \mathbb{Z}$ and $g(I) \leqslant |I|$ for $I \subseteq N$.

 $H_N \subseteq \mathbb{R}^{\mathcal{P}(N)}$... the rank functions sitting on N form a polyhedral cone (finite intersection of closed halfspaces).

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g:\mathcal{P}(N)\to [0,+\infty)$ satisfying

$$g(\emptyset) = 0$$

 $g(I) \leq g(J) \text{ for } I \subseteq J$
 $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J) \text{ for } I, J \subseteq N.$

It is a matroid if $g(I) \in \mathbb{Z}$ and $g(I) \leqslant |I|$ for $I \subseteq N$.

 $H_N \subseteq \mathbb{R}^{\mathcal{P}(N)}$... the rank functions sitting on N form a polyhedral cone (finite intersection of closed halfspaces).

 (N,h_{ξ}) is a polymatroid if $h_{\xi}\in\mathbb{R}^{\mathcal{P}(N)}$ (Fujishige, 1978, *Inf. Contr.*)

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g:\mathcal{P}(N)\to [0,+\infty)$ satisfying

$$g(\emptyset) = 0$$

 $g(I) \leq g(J) \text{ for } I \subseteq J$
 $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J) \text{ for } I, J \subseteq N.$

It is a matroid if $g(I) \in \mathbb{Z}$ and $g(I) \leqslant |I|$ for $I \subseteq N$.

 $H_N \subseteq \mathbb{R}^{\mathcal{P}(N)}$... the rank functions sitting on N form a polyhedral cone (finite intersection of closed halfspaces).

$$(N,h_{\xi})$$
 is a polymatroid if $h_{\xi}\in\mathbb{R}^{\mathcal{P}(N)}$ (Fujishige, 1978, *Inf. Contr.*)

... a polymatroid (N,g) is (a)ent if g is an (a)ent point

(N,g) ... polymatroid, sits on the ground set N and has a rank function $g:\mathcal{P}(N)\to [0,+\infty)$ satisfying

$$g(\emptyset) = 0$$

 $g(I) \leq g(J) \text{ for } I \subseteq J$
 $g(I) + g(J) \geqslant g(I \cup J) + g(I \cap J) \text{ for } I, J \subseteq N.$

It is a matroid if $g(I) \in \mathbb{Z}$ and $g(I) \leqslant |I|$ for $I \subseteq N$.

 $H_N \subseteq \mathbb{R}^{\mathcal{P}(N)}$... the rank functions sitting on N form a polyhedral cone (finite intersection of closed halfspaces).

$$(N,h_{\xi})$$
 is a polymatroid if $h_{\xi}\in\mathbb{R}^{\mathcal{P}(N)}$ (Fujishige, 1978, *Inf. Contr.*)

... a polymatroid (N,g) is (a)ent if g is an (a)ent point

$$H_N \supseteq cl(H_N^{\text{ent}}) \supseteq H_N^{\text{ent}} \supseteq ri(cl(H_N^{\text{ent}}))$$

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$
 $t r_J$ is entropic for all $t \geqslant 0$.

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$ $t r_J$ is entropic for all $t \geqslant 0$.

If N partitions into
$$I \cup J$$
 and $r(N) = r(I) + r(J)$ in a matroid (N, r)

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$ $t r_J$ is entropic for all $t \geqslant 0$.

If N partitions into
$$I \cup J$$
 and $r(N) = r(I) + r(J)$ in a matroid (N, r)
then $t r \in H_N^{\text{ent}}$ iff $t r|_{\mathcal{P}(I)} \in H_I^{\text{ent}}$ and $t r|_{\mathcal{P}(J)} \in H_J^{\text{ent}}$.

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$ $t r_J$ is entropic for all $t \geqslant 0$.

If N partitions into
$$I \cup J$$
 and $r(N) = r(I) + r(J)$ in a matroid (N, r)
then $t r \in H_N^{\text{ent}}$ iff $t r|_{\mathcal{P}(I)} \in H_I^{\text{ent}}$ and $t r|_{\mathcal{P}(J)} \in H_J^{\text{ent}}$.

If a matroid (N, r) is connected

For
$$J \subseteq N$$
 and the matroid (N, r_J) with $r_J(I) = \begin{cases} 1, & I \cap J \neq \emptyset \\ 0, & I \cap J = \emptyset \end{cases}$ $t r_J$ is entropic for all $t \geqslant 0$.

If N partitions into
$$I \cup J$$
 and $r(N) = r(I) + r(J)$ in a matroid (N, r) then $t r \in H_N^{\text{ent}}$ iff $t r|_{\mathcal{P}(I)} \in H_I^{\text{ent}}$ and $t r|_{\mathcal{P}(J)} \in H_J^{\text{ent}}$.

If a matroid (N, r) is connected then r belongs to en extreme ray of H_N .

Multiples of matroidal rank functions Partition representable matroids Classes of matroids Open problems

From now on, a matroid (N, r) is connected and $r(N) \ge 2$.

From now on, a matroid (N, r) is connected and $r(N) \ge 2$.

```
For (N,r), t\geqslant 0 and random vector \xi=(\xi_i)_{i\in N}, t\ r\in H_N^{\rm ent} implies t\in \{\ln d\colon d=1,2,\ldots\}, and (\ln d)\ r=h_\xi implies that \xi_I takes d^{r(I)} values with the same probability, I\subseteq N. (FM, 1994, Int. J. Gen. Syst.)
```

From now on, a matroid (N, r) is connected and $r(N) \ge 2$.

```
For (N,r), t\geqslant 0 and random vector \xi=(\xi_i)_{i\in N}, t\ r\in H_N^{\rm ent} implies t\in \{\ln d\colon d=1,2,\ldots\}, and (\ln d)\ r=h_\xi implies that \xi_I takes d^{r(I)} values with the same probability, I\subseteq N. (FM, 1994, Int. J. Gen. Syst.)
```

A matroid (N,r) is partition (p-) representable of the degree $d\geqslant 2$ if there exist partitions $\pi_i,\ i\in N$, of a finite set Ω with $d^{r(N)}$ elements such that for all $I\subseteq N$ the meet of $\pi_i,\ i\in I$, has $d^{r(I)}$ blocks of the same cardinality.

From now on, a matroid (N, r) is connected and $r(N) \ge 2$.

```
For (N,r), t\geqslant 0 and random vector \xi=(\xi_i)_{i\in N}, t\ r\in H_N^{\rm ent} implies t\in \{\ln d\colon d=1,2,\ldots\}, and (\ln d)\ r=h_\xi implies that \xi_I takes d^{r(I)} values with the same probability, I\subseteq N. (FM, 1994, Int. J. Gen. Syst.)
```

A matroid (N,r) is partition (p-) representable of the degree $d\geqslant 2$ if there exist partitions $\pi_i,\ i\in N$, of a finite set Ω with $d^{r(N)}$ elements such that for all $I\subseteq N$ the meet of $\pi_i,\ i\in I$, has $d^{r(I)}$ blocks of the same cardinality.

... secret sharing matroids, almost affine codes, ...

$$|\Omega| = 3^2 = d^{r(N)}$$
, $|N| = 4$, the four partitions

$$|\Omega|=3^2=d^{r(N)}$$
, $|N|=4$, the four partitions

$$|\Omega| = 3^2 = d^{r(N)}$$
, $|N| = 4$, the four partitions

represent $U_{2,4}$, the degree is d=3.

$$|\Omega| = 3^2 = d^{r(N)}$$
, $|N| = 4$, the four partitions

represent $U_{2,4}$, the degree is d=3.

They correspond to two orthogonal Latin squares.

$$|\Omega| = 3^2 = d^{r(N)}$$
, $|N| = 4$, the four partitions

represent $U_{2,4}$, the degree is d=3.

They correspond to two orthogonal Latin squares.

A p-representation of $U_{2,4}$ of the degree d=10 exists.

If (N, r) is linear over the field with d elements

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.

(is multilinear, Simonis & Ashikhmin, 1998, Des. Codes and Cryptography)

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.

(is multilinear, Simonis & Ashikhmin, 1998, Des. Codes and Cryptography)

P-representable of some degree implies almost entropic.

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.

(is multilinear, Simonis & Ashikhmin, 1998, Des. Codes and Cryptography)

P-representable of some degree implies almost entropic.

Stick the Fano and non-Fano matroids along a point:

If (N, r) is linear over the field with d elements then it is p-representable of the degree d.

The converse holds when d = 2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.

(is multilinear, Simonis & Ashikhmin, 1998, Des. Codes and Cryptography)

P-representable of some degree implies almost entropic.

Stick the Fano and non-Fano matroids along a point:

not p-representable of any degree, but almost entropic.

Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities

Multiples of matroidal rank functions Partition representable matroids Classes of matroids Open problems

Open problems

Open problems

? p-representable of some degree but not multilinear ?

Open problems

- ? p-representable of some degree but not multilinear ?
- ? the class of almost entropic matroids, excluded minors ?

Open problems

- ? p-representable of some degree but not multilinear ?
- ? the class of almost entropic matroids, excluded minors ?
- ? the critical problem for these classes of matroids ?

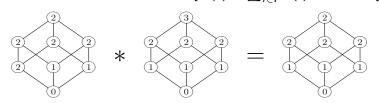
Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by

Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f(I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$,

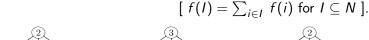
Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f (I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$, is a polymatroid whenever f is modular (Lovász, 1982)

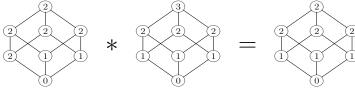
Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f (I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$, is a polymatroid whenever f is modular (Lovász, 1982) $[f(I) = \sum_{i \in I} f(i) \text{ for } I \subseteq N].$

Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f (I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$, is a polymatroid whenever f is modular (Lovász, 1982) $[f(I) = \sum_{i \in I} f(i) \text{ for } I \subseteq N].$



Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f (I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$, is a polymatroid whenever f is modular (Lovász, 1982)



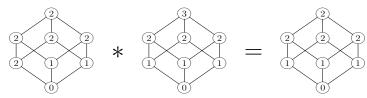


g aent and f modular implies g * f aent.

(FM07)

Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by $g * f (I) = \min_{J \subseteq I} [g(J) + f(I \setminus J)]$ for $I \subseteq N$, is a polymatroid whenever f is modular (Lovász, 1982)

[
$$f(I) = \sum_{i \in I} f(i)$$
 for $I \subseteq N$].



g aent and f modular implies g * f aent.

(FM07)

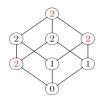
[$cl(H_N^{\text{ent}})$ is closed to the convolutions with modular polymatroids.]

Factor of a polymatroid (N, g)

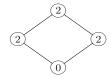
Factor of a polymatroid (N, g)by a set M of disjoint blocks covering N Factor of a polymatroid (N,g)by a set M of disjoint blocks covering Nis the polymatroid (M,f) given by $f(L)=g(\bigcup L)$ for $L\subseteq M$.

Factor of a polymatroid (N, g)

by a set M of disjoint blocks covering N is the polymatroid (M, f) given by $f(L) = g(\bigcup L)$ for $L \subseteq M$.

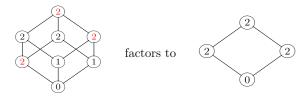


factors to



Factor of a polymatroid (N, g)

by a set M of disjoint blocks covering N is the polymatroid (M, f) given by $f(L) = g(\bigcup L)$ for $L \subseteq M$.

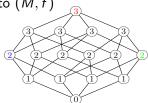


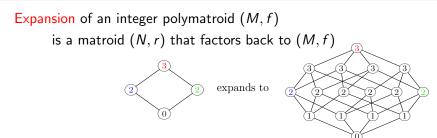
Every integer polymatroid is a factor of a matroid.

Expansion of an integer polymatroid (M, f)

Expansion of an integer polymatroid (M, f) is a matroid (N, r) that factors back to (M, f)

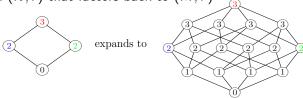
Expansion of an integer polymatroid (M, f) is a matroid (N, r) that factors back to (M, f)





Free expansion can be constructed in two steps

Expansion of an integer polymatroid (M, f) is a matroid (N, r) that factors back to (M, f)



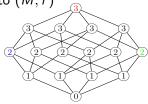
Free expansion can be constructed in two steps

1. make f(m) parallel copies of each $m \in M$

Expansion of an integer polymatroid (M, f)

is a matroid (N,r) that factors back to (M,f)

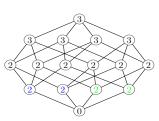
expands to



Free expansion can be constructed in two steps

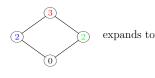
1. make f(m) parallel copies of each $m \in M$

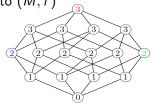
parallelizes to



Expansion of an integer polymatroid (M, f)

is a matroid (N, r) that factors back to (M, f)

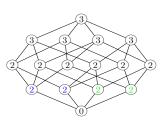




Free expansion can be constructed in two steps

1. make f(m) parallel copies of each $m \in M$





2. convolve with the free matroid $I \mapsto |I|$

Every aent integer polymatroid (M, f) is a factor of an aent matroid. (FM, Jan 2007, *Trans. IT IE* 3)

```
Every aent integer polymatroid (M, f) is a factor of an aent matroid. (FM, Jan 2007, Trans. IT IE<sup>3</sup>)
```

The cone $cl(H_N^{\text{ent}})$ can be described in terms of aent matroids:

```
Every aent integer polymatroid (M, f) is a factor of an aent matroid. (FM, Jan 2007, Trans. IT IE<sup>3</sup>)
```

The cone $cl(H_N^{\text{ent}})$ can be described in terms of aent matroids: scalings of factors of aent matroids are dense $cl(H_N^{\text{ent}})$.

DefinitionZhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

A point $c = (c_I)_{I \subseteq N}$ of $\mathbb{R}^{\mathcal{P}(N)}$ generates a (linear unconditional) information inequality if $\sum_{I \subset N} c_I \cdot g(I) \leqslant 0$ for the entropic points $g = (g(I))_{I \subset N}$.

A point
$$c = (c_I)_{I \subseteq N}$$
 of $\mathbb{R}^{\mathcal{P}(N)}$ generates a (linear unconditional) information inequality if $\sum_{I \subset N} c_I \cdot g(I) \leqslant 0$ for the entropic points $g = (g(I))_{I \subset N}$.

... $\langle c,g\rangle\leqslant 0$ for $g\in H_N^{\rm ent}$, thus c belongs to the polar of $H_N^{\rm ent}$.

A point
$$c = (c_I)_{I \subseteq N}$$
 of $\mathbb{R}^{\mathcal{P}(N)}$ generates a (linear unconditional) information inequality if $\sum_{I \subset N} c_I \cdot g(I) \leqslant 0$ for the entropic points $g = (g(I))_{I \subset N}$.

... $\langle c,g \rangle \leqslant 0$ for $g \in H_N^{\mathrm{ent}}$, thus c belongs to the polar of H_N^{ent} .

$$pol(H_N) \subseteq pol(cl(H_N^{\text{ent}})) = pol(H_N^{\text{ent}})$$

A point
$$c = (c_I)_{I \subseteq N}$$
 of $\mathbb{R}^{\mathcal{P}(N)}$ generates a (linear unconditional) information inequality if $\sum_{I \subset N} c_I \cdot g(I) \leqslant 0$ for the entropic points $g = (g(I))_{I \subseteq N}$.

... $\langle c,g \rangle \leqslant 0$ for $g \in H_N^{\mathrm{ent}}$, thus c belongs to the polar of H_N^{ent} .

$$pol(H_N) \subseteq pol(cl(H_N^{\text{ent}})) = pol(H_N^{\text{ent}})$$

The inequality is of Shannon type if it is satisfied even by the rank functions of all polymatroids, thus if $c \in pol(H_N)$.

A point
$$c = (c_I)_{I \subseteq N}$$
 of $\mathbb{R}^{\mathcal{P}(N)}$ generates a (linear unconditional) information inequality if $\sum_{I \subset N} c_I \cdot g(I) \leqslant 0$ for the entropic points $g = (g(I))_{I \subseteq N}$.

... $\langle c,g \rangle \leqslant 0$ for $g \in H_N^{\mathrm{ent}}$, thus c belongs to the polar of H_N^{ent} .

$$pol(H_N) \subseteq pol(cl(H_N^{\text{ent}})) = pol(H_N^{\text{ent}})$$

The inequality is of Shannon type if it is satisfied even by the rank functions of all polymatroids, thus if $c \in pol(H_N)$.

If
$$|N| \le 3$$
 then $H_N = cl(H_N^{\text{ent}})$ whence all info inequalities are of Shannon type.

For the entropy functions $g = h_{\xi}$ over $N = \{i, j, k, l\}$

$$3[g(ik) + g(il) + g(kl)] + g(jk) + g(jl)$$

$$\geqslant g(i) + 2[g(k) + g(l)] + g(ij) + 4g(ikl) + g(jkl)$$
(Zhang & Yeung 1998, *Trans. IT IE*³)

i, j, k, l considered for singletons, the signs for union omitted

Definition

Zhang-Yeung inequality

Adhesivity of polymatroids

Inner adhesivity, also in recurrence

For the entropy functions $g = h_{\xi}$ over $N = \{i, j, k, l\}$

$$3[g(ik) + g(il) + g(kl)] + g(jk) + g(jl)$$

 $\geqslant g(i) + 2[g(k) + g(l)] + g(ij) + 4g(ikl) + g(jkl)$
(Zhang & Yeung 1998, *Trans. IT IE*³)

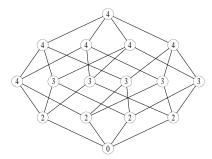
i,j,k,l considered for singletons, the signs for union omitted ZY inequality is violated by the polymatroid

For the entropy functions $g = h_{\xi}$ over $N = \{i, j, k, l\}$

$$3[g(ik) + g(il) + g(kl)] + g(jk) + g(jl)$$

$$\geqslant g(i) + 2[g(k) + g(l)] + g(ij) + 4g(ikl) + g(jkl)$$
(Zhang & Yeung 1998, *Trans. IT IE*³)

i,j,k,l considered for singletons, the signs for union omitted ZY inequality is violated by the polymatroid

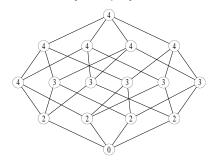


For the entropy functions $g = h_{\xi}$ over $N = \{i, j, k, l\}$

$$3[g(ik) + g(il) + g(kl)] + g(jk) + g(jl)$$

$$\geqslant g(i) + 2[g(k) + g(l)] + g(ij) + 4g(ikl) + g(jkl)$$
(Zhang & Yeung 1998, *Trans. IT IE*³)

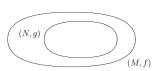
i, j, k, l considered for singletons, the signs for union omitted ZY inequality is violated by the polymatroid

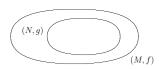


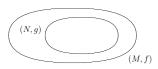
hence it is not of Shannon type and $cl(H_N^{\text{ent}}) \subsetneq H_N$.

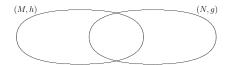
Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities

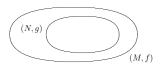
Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

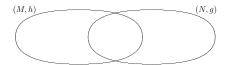






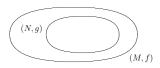


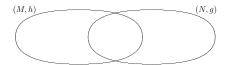




Polymatroids g and h are adhesive if a polymatroid $(M \cup N, f)$ extends both and

$$f(M) + f(N) = f(M \cup N) + f(M \cap N)$$





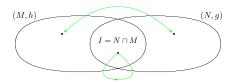
Polymatroids g and h are adhesive if a polymatroid $(M \cup N, f)$ extends both and

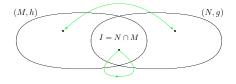
$$f(M) + f(N) = f(M \cup N) + f(M \cap N)$$

 $(f \dots an adhesive extension of g and h)$.

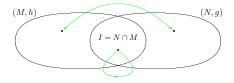
Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

A polymatroid (N, g) is selfadhesive at $I \subseteq N$ if (N, g) and its copy(M, h) along I adhere.



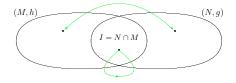


A polymatroid is selfadhesive if it is selfadhesive at each subset of its ground set.



A polymatroid is selfadhesive if it is selfadhesive at each subset of its ground set.

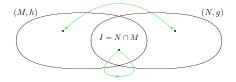
Over the ground set N of cardinality four, a polymatroid is selfadhesive if and only if it satisfies all instances of ZY inequality.



A polymatroid is selfadhesive if it is selfadhesive at each subset of its ground set.

Over the ground set N of cardinality four, a polymatroid is selfadhesive if and only if it satisfies all instances of ZY inequality.

(FM 2007, Discrete Math)



A polymatroid is selfadhesive if it is selfadhesive at each subset of its ground set.

Over the ground set N of cardinality four, a polymatroid is selfadhesive if and only if it satisfies all instances of ZY inequality.

(FM 2007, Discrete Math)

The entropy functions are selfadhesive.

ntropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

Iterate adhesive extensions and restrictions:

a sequence $H_N^{ar}(s)$, $s \ge 0$, starting at $H_N^{ar}(0) = H_N$ is defined by

a sequence
$$H_N^{ar}(s)$$
, $s \ge 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and

a sequence
$$H_N^{ar}(s)$$
, $s\geqslant 0$, starting at $H_N^{ar}(0)=H_N$ is defined by $g\in H_N^{ar}(s+1)$ iff $g\in H_N$ and the restrictions of g to any $I,J\subseteq N$ with $I\cup J=N$

a sequence
$$H_N^{ar}(s)$$
, $s \geqslant 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and the restrictions of g to any $I, J \subseteq N$ with $I \cup J = N$ have an adhesive extension in $H_N^{ar}(s)$.

a sequence
$$H_N^{ar}(s)$$
, $s \geqslant 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and the restrictions of g to any $I, J \subseteq N$ with $I \cup J = N$ have an adhesive extension in $H_N^{ar}(s)$.

$$H_N^{\mathsf{ar}}(s) \supseteq H_N^{\mathsf{ar}}(s+1)$$
 ... polyhedral cones

a sequence
$$H_N^{ar}(s)$$
, $s \geqslant 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and the restrictions of g to any $I, J \subseteq N$ with $I \cup J = N$ have an adhesive extension in $H_N^{ar}(s)$.

$$H_{\mathcal{N}}^{\mathsf{ar}}(s) \supseteq H_{\mathcal{N}}^{\mathsf{ar}}(s+1)$$
 ... polyhedral cones

$$H_N^{ia} = \bigcap_{s\geqslant 0} H_N^{ar}(s)$$
 ... the polymatroids with inner adhesivity.

a sequence
$$H_N^{ar}(s)$$
, $s \geqslant 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and the restrictions of g to any $I, J \subseteq N$ with $I \cup J = N$ have an adhesive extension in $H_N^{ar}(s)$.

$$H_N^{\mathsf{ar}}(s) \supseteq H_N^{\mathsf{ar}}(s+1)$$
 ... polyhedral cones

$$H_N^{\text{ia}} = \bigcap_{s \geqslant 0} H_N^{\text{ar}}(s)$$
 ... the polymatroids with inner adhesivity.

$$cl(H_N^{\text{ent}}) \subseteq H_N^{\text{ia}}$$

a sequence
$$H_N^{ar}(s)$$
, $s \ge 0$, starting at $H_N^{ar}(0) = H_N$ is defined by $g \in H_N^{ar}(s+1)$ iff $g \in H_N$ and the restrictions of g to any $I, J \subseteq N$ with $I \cup J = N$ have an adhesive extension in $H_N^{ar}(s)$.

$$H_{\mathcal{N}}^{\mathsf{ar}}(s) \supseteq H_{\mathcal{N}}^{\mathsf{ar}}(s+1)$$
 ... polyhedral cones

$$H_N^{ia} = \bigcap_{s \geqslant 0} H_N^{ar}(s)$$
 ... the polymatroids with inner adhesivity.

$$cl(H_N^{\text{ent}}) \subseteq H_N^{\text{ia}}$$

... because two restrictions of an entropic polymatroid have an adhesive extension that is entropic.

For
$$N = \{1, 2, 3, 4, 5\}$$
 and $g \in H_N^{ar}(s)$, $s \geqslant 1$,
$$s \left[\square_{12,34} \ g + \Delta_{34|5} \ g + \Delta_{45|3} \ g \right] \\ + \Delta_{35|4} \ g + \frac{s(s-1)}{2} \left[\Delta_{24|3} \ g + \Delta_{34|2} \ g \right] \geqslant 0.$$

For
$$N=\{1,2,3,4,5\}$$
 and $g\in H_N^{ar}(s),\,s\geqslant 1,$
$$s\big[\square_{12,34}\,g+\Delta_{34|5}\,g+\Delta_{45|3}\,g\big]\\ +\Delta_{35|4}\,g+\frac{s(s-1)}{2}\big[\Delta_{24|3}\,g+\Delta_{34|2}\,g\big]\geqslant 0.$$
 where $\Delta_{34|5}\,g=g(35)+g(45)-g(5)-g(345)$

For
$$N=\{1,2,3,4,5\}$$
 and $g\in H_N^{\rm ar}(s),\,s\geqslant 1,$
$$s\big[\Box_{12,34}\,g+\Delta_{34|5}\,g+\Delta_{45|3}\,g\big]\\ +\Delta_{35|4}\,g+\frac{s(s-1)}{2}\big[\Delta_{24|3}\,g+\Delta_{34|2}\,g\big]\geqslant 0.$$
 where $\Delta_{34|5}\,g=g(35)+g(45)-g(5)-g(345)$ and $\Box_{12,34}\,g=\Delta_{34|1}\,g+\Delta_{34|2}\,g+\Delta_{12|\emptyset}\,g-\Delta_{34|\emptyset}\,g$

For
$$N=\{1,2,3,4,5\}$$
 and $g\in H_N^{ar}(s),\,s\geqslant 1,$
$$s\big[\Box_{12,34}\,g+\Delta_{34|5}\,g+\Delta_{45|3}\,g\big]\\ +\Delta_{35|4}\,g+\frac{s(s-1)}{2}\big[\Delta_{24|3}\,g+\Delta_{34|2}\,g\big]\geqslant 0.$$
 where $\Delta_{34|5}\,g=g(35)+g(45)-g(5)-g(345)$ and $\Box_{12,34}\,g=\Delta_{34|1}\,g+\Delta_{34|2}\,g+\Delta_{12|\emptyset}\,g-\Delta_{34|\emptyset}\,g$

A proof is by induction on s, proving even three sequences of such inequalities simultaneously.

For
$$N=\{1,2,3,4,5\}$$
 and $g\in H_N^{\rm ar}(s),\,s\geqslant 1,$
$$s\big[\Box_{12,34}\,g+\Delta_{34|5}\,g+\Delta_{45|3}\,g\big]\\ +\Delta_{35|4}\,g+\frac{s(s-1)}{2}\big[\Delta_{24|3}\,g+\Delta_{34|2}\,g\big]\geqslant 0.$$
 where $\Delta_{34|5}\,g=g(35)+g(45)-g(5)-g(345)$ and $\Box_{12,34}\,g=\Delta_{34|1}\,g+\Delta_{34|2}\,g+\Delta_{12|\emptyset}\,g-\Delta_{34|\emptyset}\,g$

A proof is by induction on s, proving even three sequences of such inequalities simultaneously.

Hence, all the inequalities hold for the almost entropic points.

Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities

Definition Zhang-Yeung inequality Adhesivity of polymatroids Inner adhesivity, also in recurrence

$$(\xi_5 = \xi_1)$$

$$(\xi_5=\xi_1)$$

For $s\geqslant 1$ and the entropic function f of $(\xi_1,\xi_2,\xi_3,\xi_4)$

$$s \square_{12,34} f + \Delta_{24,34} f + \frac{s(s+1)}{2} [\Delta_{23,34} f + \Delta_{23,24} f] \geqslant 0$$

$$(\xi_5 = \xi_1)$$

For $s\geqslant 1$ and the entropic function f of $(\xi_1,\xi_2,\xi_3,\xi_4)$

$$s \square_{12,34} f + \Delta_{24,34} f + \frac{s(s+1)}{2} [\Delta_{23,34} f + \Delta_{23,24} f] \geqslant 0$$

In terms of mutual information,

$$s[I(\xi_3; \xi_4 | \xi_1) + I(\xi_3; \xi_4 | \xi_2) + I(\xi_1; \xi_2) - I(\xi_3; \xi_4)]$$
$$+I(\xi_2; \xi_3 | \xi_4) + \frac{s(s+1)}{2} [I(\xi_2; \xi_4 | \xi_3) + I(\xi_3; \xi_4 | \xi_2)] \geqslant 0$$

$$(\xi_5=\xi_1)$$

For $s\geqslant 1$ and the entropic function f of $(\xi_1,\xi_2,\xi_3,\xi_4)$

$$s \square_{12,34} f + \Delta_{24,34} f + \frac{s(s+1)}{2} [\Delta_{23,34} f + \Delta_{23,24} f] \geqslant 0$$

In terms of mutual information,

$$s \left[I(\xi_3; \xi_4 | \xi_1) + I(\xi_3; \xi_4 | \xi_2) + I(\xi_1; \xi_2) - I(\xi_3; \xi_4) \right]$$

+
$$I(\xi_2; \xi_3 | \xi_4) + \frac{s(s+1)}{2} \left[I(\xi_2; \xi_4 | \xi_3) + I(\xi_3; \xi_4 | \xi_2) \right] \geqslant 0$$

s = 1: ZY inequality.

$$(\xi_5=\xi_1)$$

For $s \geqslant 1$ and the entropic function f of $(\xi_1, \xi_2, \xi_3, \xi_4)$

$$s \square_{12,34} f + \Delta_{24,34} f + \frac{s(s+1)}{2} [\Delta_{23,34} f + \Delta_{23,24} f] \geqslant 0$$

In terms of mutual information,

$$s \left[I(\xi_3; \xi_4 | \xi_1) + I(\xi_3; \xi_4 | \xi_2) + I(\xi_1; \xi_2) - I(\xi_3; \xi_4) \right]$$

+
$$I(\xi_2; \xi_3 | \xi_4) + \frac{s(s+1)}{2} \left[I(\xi_2; \xi_4 | \xi_3) + I(\xi_3; \xi_4 | \xi_2) \right] \geqslant 0$$

$$s = 1$$
: ZY inequality.

$$s = 2$$
: $2\square_{12,34} f + \Delta_{24,34} f + 3\Delta_{23,34} f + 3\Delta_{23,24} f \geqslant 0$

$$(\xi_5=\xi_1)$$

For $s \geqslant 1$ and the entropic function f of $(\xi_1, \xi_2, \xi_3, \xi_4)$

$$s \square_{12,34} f + \Delta_{24,34} f + \frac{s(s+1)}{2} [\Delta_{23,34} f + \Delta_{23,24} f] \geqslant 0$$

In terms of mutual information,

$$s \left[I(\xi_3; \xi_4 | \xi_1) + I(\xi_3; \xi_4 | \xi_2) + I(\xi_1; \xi_2) - I(\xi_3; \xi_4) \right]$$

+
$$I(\xi_2; \xi_3 | \xi_4) + \frac{s(s+1)}{2} \left[I(\xi_2; \xi_4 | \xi_3) + I(\xi_3; \xi_4 | \xi_2) \right] \geqslant 0$$

$$s = 1$$
: ZY inequality.

$$s = 2$$
: $2\square_{12,34} f + \Delta_{24,34} f + 3\Delta_{23,34} f + 3\Delta_{23,24} f \geqslant 0$

(Dougherty, Freiling & Zeger, ISIT 2006)

Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities

Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

 $cl(H_N^{\text{ent}})$ is not polyhedral if and only if $|N| \ge 4$.

 $cl(H_N^{\text{ent}})$ is not polyhedral if and only if $|N| \ge 4$.

(FM, ISIT 2007)

$$cl(H_N^{\text{ent}})$$
 is not polyhedral if and only if $|N| \ge 4$.

(FM, ISIT 2007)

For a proof it suffices to consider |N| = 4.

$$cl(H_N^{\text{ent}})$$
 is not polyhedral if and only if $|N| \ge 4$.

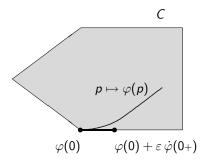
(FM, ISIT 2007)

For a proof it suffices to consider |N| = 4.

The latter sequence of inequalities is used to arrive at contradiction with a geometrical lemma.

If $C \subseteq \mathbb{R}^d$ is polyhedral and a curve $\varphi \colon [0,1] \to C$ has a tangent $\dot{\varphi}(0+)$ then C contains the segment with endpoints $\varphi(0)$ and $\varphi(0) + \varepsilon \dot{\varphi}(0+)$ for some $\varepsilon > 0$.

If $C \subseteq \mathbb{R}^d$ is polyhedral and a curve $\varphi \colon [0,1] \to C$ has a tangent $\dot{\varphi}(0+)$ then C contains the segment with endpoints $\varphi(0)$ and $\varphi(0) + \varepsilon \dot{\varphi}(0+)$ for some $\varepsilon > 0$.



Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

An appropriate curve in $cl(H_N^{\rm ent})$ is constructed from four $\{0,1\}$ -valued variables:

Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

An appropriate curve in $cl(H_N^{\rm ent})$ is constructed from four $\{0,1\}$ -valued variables:

 $\xi_1 = 0$ with the probability 2p

An appropriate curve in $cl(H_N^{\rm ent})$ is constructed from four $\{0,1\}$ -valued variables:

 $\xi_1 = 0$ with the probability 2p

 $\xi_2 = 0$ with the probability $\frac{1}{2}$

An appropriate curve in $cl(H_N^{\text{ent}})$ is constructed from four $\{0,1\}$ -valued variables:

 $\xi_1 = 0$ with the probability 2p

 $\xi_2 = 0$ with the probability $\frac{1}{2}$

 ξ_1 independent of ξ_2

An appropriate curve in $cl(H_N^{\rm ent})$ is constructed from four $\{0,1\}$ -valued variables:

 $\xi_1 = 0$ with the probability 2p

 $\xi_2 = 0$ with the probability $\frac{1}{2}$

 ξ_1 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_1 = 0$$
 with the probability $2p$

$$\xi_2 = 0$$
 with the probability $\frac{1}{2}$

$$\xi_1$$
 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_4 = (1 - \xi_1)(1 - \xi_2).$$

$$\xi_1 = 0$$
 with the probability $2p$

$$\xi_2 = 0$$
 with the probability $\frac{1}{2}$

$$\xi_1$$
 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_4 = (1 - \xi_1)(1 - \xi_2).$$

$$h_{\xi}^{(p)}$$
 ... the entropy function of $(\xi_1,\xi_2,\xi_3,\xi_4)$

$$\xi_1 = 0$$
 with the probability $2p$

$$\xi_2 = 0$$
 with the probability $\frac{1}{2}$

 ξ_1 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_4 = (1 - \xi_1)(1 - \xi_2).$$

 $h_{\xi}^{(p)}$... the entropy function of $(\xi_1, \xi_2, \xi_3, \xi_4)$

$$\ln 2 \cdot \frac{\varphi}{\varphi}(p) = h_{\xi}^{(p)} + \beta(p) \, r_1^{14} + \left[\ln 2 + 2p \ln 2 - \frac{1}{2}\beta(2p) \right] \left[\, r_1^{23} + r_2^4 \, \right]$$

$$\xi_1 = 0$$
 with the probability $2p$

$$\xi_2 = 0$$
 with the probability $\frac{1}{2}$

 ξ_1 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_4 = (1 - \xi_1)(1 - \xi_2).$$

 $h_{\xi}^{(p)}$... the entropy function of $(\xi_1, \xi_2, \xi_3, \xi_4)$

$$\ln 2 \cdot \varphi(p) = h_{\xi}^{(p)} + \beta(p) \, r_1^{14} + \left[\ln 2 + 2p \ln 2 - \frac{1}{2}\beta(2p) \right] \left[\, r_1^{23} + r_2^4 \, \right]$$
 where $\beta(p) = -p \ln p - (1-p) \ln (1-p)$

$$\xi_1 = 0$$
 with the probability $2p$

$$\xi_2 = 0$$
 with the probability $\frac{1}{2}$

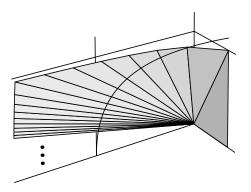
 ξ_1 independent of ξ_2

$$\xi_3 = \xi_1 \cdot \xi_2$$

$$\xi_4 = (1 - \xi_1)(1 - \xi_2).$$

 $h_{\xi}^{(p)}$... the entropy function of $(\xi_1, \xi_2, \xi_3, \xi_4)$

$$\ln 2 \cdot \varphi(p) = h_{\xi}^{(p)} + \beta(p) \, r_1^{14} + \left[\ln 2 + 2p \ln 2 - \frac{1}{2}\beta(2p) \right] \left[\, r_1^{23} + r_2^4 \, \right]$$
 where $\beta(p) = -p \ln p - (1-p) \ln (1-p)$ and r_1^{14} , r_2^{13} , r_2^4 are linear matroids.



A projection to \mathbb{R}^3 of the halfspaces given by the new information inequalities and the curve $p\mapsto \varphi(p)$.

Entropy functions and polymatroids Matroids and Shannon entropy Convolutions and expansions Information inequalities

Definition
Zhang-Yeung inequality
Adhesivity of polymatroids
Inner adhesivity, also in recurrence

Added after the discussion: Classes of matroids

Added after the discussion: Classes of matroids

