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€ = (&)ien ... a random vector indexed by a finite set N
& = (&)ies ... asubvectorof &, I C N

The entropy function he of £ maps each subset / of N
to the Shannon entropy of &;. J

(he(1))icn -.. an entropic point of Euclidean space R”(V),
provided £ takes a finite number of values

HSM™ ... the set of entropic points
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a+b>Infe?] (FM, Jan 2006, Trans. IT IE®)
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cl(H§™) ... the closure of H™

consists of almost entropic points

C/(Hﬁ,"t) is a convex cone (Zhang & Yeung, Nov 1997, Trans. IT IE3)J

. not depending on the base of logarithms in — 3" p(x)Inp(x)

ri(cl(HY™)) € Hy" (FM, Jan 07, Trans. IT IE3)J

... HY™ and cl(Hg™) differ only on the boundary of the cone
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(N, g) ... polymatroid, sits on the ground set N and has
a rank function g: P(N) — [0, +00) satisfying
g(0)=o0
g(l) <g(J) forl CJ
g +g()=g(lud)y+g(InJ)forl,J T N.
It is a matroid if g(/) € Z and g(/) < |/| for I C N.
Hy € RP(N) | the rank functions sitting on N form

a polyhedral cone (finite intersection of closed halfspaces).

(N, he) is a polymatroid if he € RP(N)  (Fujishige, 1978, Inf. Contr) |

.. a polymatroid (N, g) is (a)ent if g is an (a)ent point

Hy 2 cl(HSM) D HEM D ri(cl(HEM™)) |
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1, INJd#0

For J C N and the matroid (N, ry) with r (/) =
C (N, ) 5(1) 0. InJ—0

t ry is entropic for all t > 0.

If N partitions into / U J and r(N) = r(/) + r(J) in a matroid (N, r)
then tre HY  iff  trlpyy € Hi"™ and tr|p(y) € HF™.

If a matroid (N, r) is connected

then r belongs to en extreme ray of Hy.
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From now on, a matroid (N, r) is connected and r(N) > 2.

For (N, r), t > 0 and random vector § = (&i)ien,
tre Hy" implies te{lnd:d=1,2,...}, and
(Ind)r=he implies that & takes d"(!) values
with the same probability, / C N. (FM, 1994, Int. J. Gen. Syst.)

A matroid (N, r) is partition (p-) representable of the degree d > 2
if there exist partitions 7;, i € N, of a finite set 2
with d"(N) elements such that for all / C N the meet
of mj, i €I, has d"() blocks of the same cardinality.

. secret sharing matroids, almost affine codes, ...
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|2] =32 =d" ™) |N| = 4, the four partitions

= A\

represent U 4, the degree is d = 3.

They correspond to two orthogonal Latin squares.

A p-representation of U, 4 of the degree d = 10 exists.
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Open problems

If (N, r) is linear over the field with d elements
then it is p-representable of the degree d.
The converse holds when d =2 or d = 3.

The non-Pappus matroid is p-representable of the degree 9.
(is multilinear, Simonis & Ashikhmin, 1998, Des. Codes and Cryptography)

P-representable of some degree implies almost entropic.
Stick the Fano and non-Fano matroids along a point:

not p-representable of any degree, but almost entropic.



Aultiples of matroidal rank functions
Matroids and Shannon entropy iti ntable matroids

Open problems

Open problems



e troidal rank functions
Matroids and Shannon entropy iti table matroids

Classes of matroids
Open problems

Open problems

? p-representable of some degree but not multilinear ?



Multip! f matroidal rank functions
Matroids and Shannon entropy artition re| ntable matroids
Classes of matroids

épen problems

Open problems
? p-representable of some degree but not multilinear ?

? the class of almost entropic matroids, excluded minors ?



of matroidal rank functions
Matroids and Shannon entropy ition re ble matroids

Classes of matroids
Open problems

Open problems
? p-representable of some degree but not multilinear ?
? the class of almost entropic matroids, excluded minors ?

? the critical problem for these classes of matroids 7
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Convolution (N, g * f) of polymatroids (N, g) and (N, f), given by
gxf (I)=minyc,[g(J)+F(I\J)] for I C N,
is a polymatroid whenever f is modular (Lovész, 1982)

[f(I) =2, f(i)for ICN].

g aent and f modular implies g * f aent. (FMO?)J

[ cl(H§") is closed to the convolutions with modular polymatroids. |
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by a set M of disjoint blocks covering N
is the polymatroid (M, f) given by (L) = g(U L) for L C M.

Every integer polymatroid is a factor of a matroid.
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Expansion of an integer polymatroid (M, f)
is a matroid (N, r) that factors back to (M, f)

Free expansion can be constructed in two steps

1. make f(m) parallel copies of each m € M

2. convolve with the free matroid / +— |/
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Every aent integer polymatroid (M, f)
is a factor of an aent matroid. (FM, Jan 2007, Trans. IT IE®)

The cone c/(H§™) can be described in terms of aent matroids:

scalings of factors of aent matroids are dense c/(H™).
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A point ¢ = (¢)icn of RP(N) generates
a (linear unconditional) information inequality if
>_icn ¢ - &(1) < 0 for the entropic points g = (g(/))icn-

. {c,g) <0 for g € HY", thus c belongs to the polar of H™".

pol(Hn) C pol(cl(H§™)) = pol(Hy™) J
The inequality is of Shannon type if it is satisfied even
by the rank functions of all polymatroids, thus if ¢ € pol(Hy). J

If |N| < 3 then Hy = cl(Hy")
whence all info inequalities are of Shannon type.
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Information inequalities

For the entropy functions g = he over N = {i,j, k, I}

3[g(ik) + g(il) + g(kI)] + g(jk) + g(il)
> g(i) +2[g(k) + &(N] + g(ij) + 4g(ikl) + g (jkI)
(Zhang & Yeung 1998, Trans. IT IE?)

i,j, k, I considered for singletons, the signs for union omitted
ZY inequality is violated by the polymatroid

hence it is not of Shannon type and c/(H{") & H.
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(M, f)

If NC M and g(l)=f(/) for I C N then
g is the restriction of f and f is an extension of g.

(M, h) (N,g)

Polymatroids g and h are adhesive if
a polymatroid (M U N, f) extends both and

f(M)+f(N)=f(MUN)+f(MnN)

(f ... an adhesive extension of g and h).
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A polymatroid (N, g) is selfadhesive at | C N
if (N, g) and its copy (M, h) along | adhere.

(M, h) (N.9)

A polymatroid is selfadhesive
if it is selfadhesive at each subset of its ground set.
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A polymatroid (N, g) is selfadhesive at | C N
if (N, g) and its copy (M, h) along | adhere.

(M, h) (N,g)

A polymatroid is selfadhesive
if it is selfadhesive at each subset of its ground set.

Over the ground set N of cardinality four, a polymatroid is
selfadhesive if and only if it satisfies all instances of ZY inequality. J

(FM 2007, Discrete Math)

The entropy functions are selfadhesive.
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Iterate adhesive extensions and restrictions:
a sequence Hj/(s), s > 0, starting at Hj/(0) = Hy is defined by
g € Hy(s+1)iff g € Hy and
the restrictions of g to any /I,J C N with /UJ =N

have an adhesive extension in H/(s).

Hji(s) 2 Hi/(s + 1) ... polyhedral cones

G = MNs>o0 Hi(s) ... the polymatroids with inner adhesivity.
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Information inequalities in recurrence

Iterate adhesive extensions and restrictions:
a sequence Hj/(s), s > 0, starting at Hj/(0) = Hy is defined by
g € Hy(s+1)iff g € Hy and
the restrictions of g to any /I,J C N with /UJ =N

have an adhesive extension in H/(s).

Hji(s) 2 Hi/(s + 1) ... polyhedral cones

= MNs>o0 Hi(s) ... the polymatroids with inner adhesivity. J
cl(HF") < Hyj J

... because two restrictions of an entropic polymatroid have
an adhesive extension that is entropic.



Definition

Information inequalities

For N ={1,2,3,4,5} and g € H}/(s), s > 1,

s|12,34 8 + D3sj5 8 + Dusj3 8]

+Aszs548 + 5(52_1) [A2438 +Dsqg28] 2 0.




Information inequalities

For N ={1,2,3,4,5} and g € H}/(s), s > 1,

s|12,34 8 + D3sj5 8 + Dusj3 8]

+Aszs548 + 5(52_1) [A2438 +Dsqg28] 2 0.

where  Azy5 8 = g(35) + g(45) — g(5) — 5(345)




Information inequalities

For N ={1,2,3,4,5} and g € H}/(s), s > 1,
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three sequences of such inequalities simultaneously.
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Information inequalities Inner adhesivity, also in recurrence

For N ={1,2,3,4,5} and g € H}/(s), s > 1,

s|12,34 8 + D3sj5 8 + Dusj3 8]

+Aszs548 + 5(52_1) [A2438 +Dsqg28] 2 0.

where  Agy 58 = g(35) + g(45) — g(5) — 5(345)
and 2308 =2D3418 + D328 +D12p8 — D38

A proof is by induction on s, proving even
three sequences of such inequalities simultaneously.

Hence, all the inequalities hold for the almost entropic points.
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Information inequalities

(§5 = &1)
For s > 1 and the entropic function f of (£1,£2,£3,&4)

sO234 f +Aog 34 F + s(et )[A2334f+A2324f] >0

In terms of mutual information,

s[1(€3:€41€1) + 1(€3: €4182) + 1(&1: €2) — 1(€3:€4)]
FI(E2:€31€4) + L [1(60; €4163) + 1(E3:€4€2)] = 0

s =1: ZY inequality.
s=2 201234 f +Aog34f+302334F+302324f >0
(Dougherty, Freiling & Zeger, ISIT 2006)
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cl(HR™) is not polyhedral if and only if [N| > 4. J

(FM, ISIT 2007)

For a proof it suffices to consider |N| = 4.

The latter sequence of inequalities is used to arrive at
contradiction with a geometrical lemma.
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An appropriate curve in c/(H§'") is constructed
from four {0, 1} -valued variables:

&1 = 0 with the probability 2p
&2 = 0 with the probability %
&7 independent of &5
§3=2¢81-&
§a=(1-¢1)(1-8&2)

hép) ... the entropy function of (&1,&2,&3,&4)

In2-¢(p) = K+ B(p) i + [In2+2pIn2 — 13(2p) | [ 22 + 14 ]

where 3(p) = —pInp — (1 — p)In(1 — p)

and ri#, r?3, r} are linear matroids.
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A projection to R3 of the halfspaces given by the new information
inequalities and the curve p — ©(p).
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L ? partition representable)
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