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Excluded minors

Definition

Let F be a field. M is an excluded minor for F -representability if M is not

F -representable, but deleting or contracting any element produces an

F -representable matroid.
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Excluded minors for GF(2)

Theorem (W. T. Tutte, 1958)

The only excluded minor for the class of GF(2)-representable matroids is

U2,4.

U2,4
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Excluded minors for GF(3)

Theorem (R. Reid, R. Bixby, P. Seymour, 1971/1979)

The excluded minors for the class of GF(3)-representable matroids are

U2,5, U3,5, F7, and F ∗
7 .

U2,5 U3,5 F7 F ∗
7
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Excluded minors for GF(4)

Theorem (J. Geelen, B. Gerards, A. Kapoor, 1997)

The excluded minors for the class of GF(4)-representable matroids are

U2,6, U4,6, F−
7 , (F−

7 )∗, P6, P8, and P ′′
8 .

F−
7

P6 P8
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Rota’s conjecture

Conjecture (G. C. Rota, 1971)

If F is a finite field, then there are only finitely many excluded minors for

F-representability.

The excluded minors for F -representability are only known in the case that

F is GF(2), GF(3), or GF(4).
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Lazarson’s Theorem

In contrast to Rota’s conjecture, we have:

Theorem (T. Lazarson, 1958)

There are infinitely many excluded minors for real-representability.

Proof.

If p > 2 is a prime, then the matroid represented over GF(p) by the matrix
0 1 1 · · · 1

1 0 1 · · · 1

Ip+1 1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0


is an excluded minor for real-representability.
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Geelen’s conjecture

Conjecture (J. Geelen, 2008)

If M is a real-representable matroid, then there is an excluded minor, N,

for real-representability, such that M is a minor of N.
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A proof of Geelen’s conjecture

We have proved Geelen’s conjecture.

Theorem (D. Mayhew, M. Newman, G. Whittle, 2008)

Let K be any infinite field, and let M be a K-representable matroid. There

is an excluded minor, N, for K-representability, such that M is a minor of

N.

Equivalently, the excluded minors for K-representability form a maximal

antichain in the minor order.
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Geometric representations of minors

When we delete a point, we remove it from the diagram. When we

contract, we project onto a hyperplane (maximal non-spanning set).

M

e

M delete e M contract e
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The proof

The proof uses a lot of geometrical reasoning.

We frequently exploit the following phenomenon:

Suppose M is a matroid with ground set E , and M is representable over

K, an infinite field. We can think of this representation as an embedding

of E in a projective geometry P over the field K.

Let X be a subspace of P. Because K is infinite, there is a point

e ∈ X\E , such that if Y ⊆ E spans e, then Y spans X .

Adding e to E is called adding e freely to X relative to E .

We can perform this operation and remain K-representable.
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A partition into two bases

Henceforth M is a rank-r K-representable matroid with ground set E .

A basis is a maximal independent set. We start by showing that we can

assume M is partitioned into two bases.

We embed M in the projective space P = PG(r − 1, K).
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A partition into two bases

Let B be a basis of M.

B
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A partition into two bases

Let B be a basis of M.

Let A be a maximal independent set in E − B.

B A
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A partition into two bases

We add a set, C , of points freely to P, where |C | = r − |A|.

B A

C
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A partition into two bases

Next, we add an element in series to each element of E − (A ∪ B).

B A

C
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A partition into two bases

Next, we add an element in series to each element of E − (A ∪ B).

B A

C
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A partition into two bases

Next, we add an element in series to each element of E − (A ∪ B).

B A

C
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A partition into two bases

The resulting matroid is partitioned into two bases.

B A

C
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A partition into two bases

The resulting matroid is partitioned into two bases.
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A partition into two bases

The resulting matroid is partitioned into two bases.

B A

C
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A partition into two bases

The resulting matroid is partitioned into two bases.

It certainly has M as a minor, so henceforth we assume M is

partitioned into two bases.

B A

C
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A partition into two independent hyperplanes

Next we claim that we can assume that M is partitioned into two

independent hyperplanes.
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A partition into two independent hyperplanes

We embed M in P = PG(r + 1, K), so r(E ) = r(P) − 2. Let B0 and

B1 be the bases that partition M.
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A partition into two independent hyperplanes

Add points p and q freely to P.
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A partition into two independent hyperplanes

Add points p and q freely to P.

p
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A partition into two independent hyperplanes

Add points p and q freely to P.

p q
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A partition into two independent hyperplanes

For each point b ∈ B0 add a point freely to 〈{b, p}〉. For each point

b′ ∈ B1 add a point freely to 〈{b′, q}〉.

p q
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A partition into two independent hyperplanes

For each point b ∈ B0 add a point freely to 〈{b, p}〉. For each point

b′ ∈ B1 add a point freely to 〈{b′, q}〉.

p q
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A partition into two independent hyperplanes

We delete the original points of M. The resulting matroid has a

partition into two independent hyperplanes. It has M as a minor, so

henceforth we assume M to be partitioned into two independent

hyperplanes.

p q
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Invoking Ingleton’s condition

We embed M in P = PG(r , K), so that r(E ) = r(P) − 1.

Let A and B be the two independent hyperplanes that partition M.

A B
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Invoking Ingleton’s condition

Let V be the intersection of the spans of A and B.

A B
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Invoking Ingleton’s condition

We add two points, p and q, freely to P.

A B
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Invoking Ingleton’s condition

We add two points, p and q, freely to P.

p

A B
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Invoking Ingleton’s condition

We add two points, p and q, freely to P.

p q

A B
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Invoking Ingleton’s condition

Add a set, C , of points freely to 〈V ∪ {p}〉, and a set, D, freely to

〈V ∪ {q}〉, where |C | + |D| = r + 1.

p q

A B
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Invoking Ingleton’s condition

Let N ′ be the matroid represented over K by the set of points

A ∪ B ∪ C ∪ D.

A B

C D
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Invoking Ingleton’s condition

A circuit is a minimal non-independent set. C ∪ D is a

circuit-hyperplane of N ′. Therefore, we can declare C ∪ D to be a

basis. The resulting matroid is N.

A B

C D
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Invoking Ingleton’s condition

Ingleton (1969) proved that if a matroid is representable over a field,

then

r(A) + r(B) + r(A ∪ B ∪ C ) + r(A ∪ B ∪ D) + r(C ∪ D) ≤
r(A ∪ B) + r(A ∪ C ) + r(A ∪ D) + r(B ∪ C ) + r(B ∪ D)

for any subsets, A, B, C , and D.

A B

C D
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Invoking Ingleton’s condition

However r(X ∪ Y ) = r in N, for any distinct X , Y ∈ {A, B, C , D}, as

long as {X , Y } 6= {C , D}.

A B

C D
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Invoking Ingleton’s condition

Moreover,

r(A) = r(B) = r−1, and r(A∪B∪C ) = r(A∪B∪D) = r(C∪D) = r+1.

A B

C D
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Invoking Ingleton’s condition

Therefore

r(A) + r(B) + r(A ∪ B ∪ C ) + r(A ∪ B ∪ D) + r(C ∪ D) = 5r + 1 >

5r = r(A ∪ B) + r(A ∪ C ) + r(A ∪ D) + r(B ∪ C ) + r(B ∪ D)

A B

C D
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Invoking Ingleton’s condition

We conclude that N is not representable over any field.

It is fairly easy to see that deleting or contracting any element from N

produces a K-representable matroid. Hence N is an excluded minor for

K-representability.

N has an M-minor, so the proof is complete.

A B

C D
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