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In this report, we remember our dearest friend and colleague, Pit-Mann Wong. It was his inspiration
which lead to the proposal for this workshop and its organization. In the weeks before the workshop, he was
diagnosed with a severe form of liver cancer, and was unable to attend the workshop; unfortunately, he has
since passed away, on July 3 of this year. We will remember him and miss him.

1 Overview of the Field
The Kobayashi metric is a key intrinsic quantity associated to complex manifolds, if it is nondegenerate then
the manifold is said to be hyperbolic; the study of hyperbolicity is central in much of complex geometry. This
workshop aimed to extend notions and theorems regarding hyperbolicity to the (much more general) area of
almost-complex and symplectic geometry, thus finding a range of applications to an exciting field of modern
mathematics.

Let (M,J) be an almost complex manifold and∆r, r > 0, be the disc of radius r, centered at the origin,
in the complex plane C. At a point x ∈ M and a tangent vector v ∈ TxM , denote by Hol(∆r,M)(x, v) the
space of all J-holomorphic curves from ∆r into M with the properties that f(0) = x and f ′(0) = v. The
J-Kobayashi pseudo-metric is defined by

κJ (x, v) = inf
1

r

where the infimum is taken over all r > 0 such that Hol(∆r,M)(x, v) is non-empty. An almost complex
manifold (M,J) is said to be J-Kobayashi hyperbolic if κJ (x, v) > 0 of all x ∈ M and v "= 0.

A compact almost complex manifold M is said to be J-Brody hyperbolic if there are no non-constant
J-holomorphic curves f : C −→ M . This implies, in particular, there are no rational or elliptic curves inM .

It is easy to see that J-Kobayashi hyperbolic implies J-Brody hyperbolic. The converse is false in general,
however it is valid ifM is compact;

Lemma 0.1 For a compact almost complex manifold (M,J), J-Kobayashi hyperbolic is equivalent to J-
Brody hyperbolic.

In the complex case this is a consequence of Brody’s reparametrization lemma together with a conver-
gence argument using the fact thatM is compact. In the almost complex case the argument is identical since
Brody’s reparametrization lemma only acts on the domain and the existence of a convergent subsequence
follows from Arzela-Ascoli.
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2 Recent Developments and Open Problems
In the literature there are several results concerning J-hyperbolicity. Bangert showed in [Ban98] that T 2n

equipped with a standard symplectic structure ω is not J-Brody-hyperbolic for any ω-tame almost complex
structure J . These results were extended by Biolley in her thesis [Bio04], where she proves the same result
for a Stein manifold satisfying an algebraic condition in Floer homology. In all of these cases, the manifolds
were shown to be not J-Brody hyperbolic for all tamed almost complex structures J .

On the other hand, Duval showed in [Duv04] that the complement of 5 J-holomorphic lines in (P2,ωFS),
where J is any ωFS-tame almost complex structure, is Kobayashi-hyperbolic.

3 Scientific Progress Made
In the results in the literature concerning J-hyperbolicity described above, a symplectic manifold was shown
to be either hyperbolic or not hyperbolic for all tamed almost complex structure. We extend these examples
by investigating the hyperbolicity of the complement of a divisor in ruled symplectic surfaces.

We review some necessary background on symplectic ruled surfaces. For details we refer the interested
reader to [MS98]. Let π : X → Σ be a smooth sphere bundle over a compact genus g Riemann surfaceΣ. Up
to diffeomorphism there are exactly two such bundles for each g, the productX0 = S2×Σ and the non-trivial
bundleX1. The trivial bundleX0 admits sections σ2k of even self-intersection number 2k and the non-trivial
bundle admits sections σ2k+1 of odd self-intersection number 2k+1. The second homology groupH2(X ;Z)
is generated by the class of a section and the class of a fiber f , and we have [σn] + f = [σn+2] ∈ H2(X ;Z),
[σn] · f = 1, [σn] · [σn] = n and f · f = 0. It is completely understood which cohomology classes can be
represented by symplectic forms and any two cohomologous symplectic forms onX are symplectomorphic.

Examples of such bundles are given by taking a holomorphic line bundle L → Σ and setting X =
P(L⊕ C) → Σ.

Let (X,ω) denote a symplectic sphere bundle over a Riemann surface of genus g and let J be an ω-tame
almost complex structure on X . Denote the homology class of a fiber by f and let s denote the section with
self-intersection 0 or 1, depending on whetherX is the trivial or non-trivial bundle, respectively.

Definition 0.1 Fix a symplectic ruled surface (X,ω) with tamed almost complex structure J .
Let m and n be non-negative integers and let Lf be the disjoint union of images of m J-curves in the

class f , and define Lσ to be the union of images of n generic smooth J-curve in the class [σki
] for some

integers k1, k2, . . . kn, assuming that such curves exist. Here generic means that every J-curve in the class f
intersects Lσ in at least n− 1 distinct points. Set L = Lf ∪ Lσ. Then set

X(m,n) = X \ L.

Theorem 1 X(m,n) is J-Kobayashi hyperbolic if either

• n ≥ 4, and one of the following holds

1. g > 2 or
2. g = 1 andm ≥ 1 or
3. g = 0 andm ≥ 3,

or

• n = 3,X is the trivial bundle and all curves in Lσ represent the class of the trivial section [σ0].

Theorem 2 X(m,n) is not J-Kobayashi hyperbolic if either

• n < 4 (unless n = 3, X is the trivial bundle and all curves in Lσ represent the class of the trivial
section [σ0]), or

• g = 0 andm ≤ 2, or

• g = 1 andX is the trivial bundle andm = 0.
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We also have one theorem giving a criterion of the non-hyperbolicity of symplectic manifolds admitting
a plurisubharmonic exhaustion.

Theorem 3 Let (M,J0) be a symplectic manifold, possibly with boundary. Suppose there exists a J0-
plurisubharmonic exhaustion ψ with uniformly bounded gradient with respect to the metric of the compatible
triple (ω = d dCψ, J0, g0) and so that the curvature is uniformly bounded.

Then (M,ω, J) is hyperbolic for any uniformly tamed J that is uniformly bounded w.r.t g0.

4 Open Questions
The results concerning the hyperbolicity of the complement of a divisor in a ruled surface are incomplete
since the case of the non-trivial bundle over T 2 with no section removed is not addressed. Moreover, the
theorem only applies where L is the union of distinct curves as described. It would be nice to extend this to
the case where L is a general divisor in the class. But this is much harder and very little is known even in the
complex category.
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