The interface between quantum information theory and functional analysis. Additivity conjectures and Dvoretzky’s theorem.

Stanislaw Szarek
Paris 6/Case Western Reserve

BIRS, June 28, 2010

Collaborators:
G. Aubrun, E. Werner

J. Math. Phys. 51, 022102 (2010); arxiv:1003.4925
http://www.math.jussieu.fr/~szarek/
Talk summary

• overview of certain aspects of quantum information theory: paradigms, concepts, notation

• additivity/multiplicativity problems

• an approach to those problems via tools of geometric functional analysis, notably Dvoretzky’s theorem
Conference “Perspectives in High Dimensions”

Cleveland, August 2 until August 6, 2010

http://www.case.edu/artsci/math/perspectivesInHighDimensions/
Quantum information theory
(from the geometric functional analysis angle)

- A complex Hilbert space \mathcal{H}, usually $\mathcal{H} = \mathbb{C}^d$, and the C*-algebra $\mathcal{B}(\mathcal{H})$, $\mathcal{B}(\mathbb{C}^d) = \mathcal{M}_d$
- The real space \mathcal{M}_{sa}^d of $d \times d$ Hermitian matrices
- The positive semi-definite cone $\mathcal{PSD} \subset \mathcal{M}_{sa}^d$
- The base of \mathcal{PSD} consisting of density matrices: $\mathcal{D}(\mathcal{H}) := \mathcal{PSD} \cap \{\text{tr}(\cdot) = 1\}$ \sim the states of $\mathcal{B}(\mathcal{H}) = \text{the positive face of the unit ball in the trace class (1-Schatten) norm}$
- Completely positive (CP) maps $\Phi : \mathcal{B}(\mathcal{H}_1) \rightarrow \mathcal{B}(\mathcal{H}_2)$, usually also required to be trace preserving (TP)
More context and more notation

Unit vector \(\psi \in \mathcal{H} = \mathbb{C}^d \) (or \(|\psi\rangle\)) : “state” of a quantum system with \(d \) levels

\[d = 2 \rightarrow \text{qubits} \]

\[\rho = \psi \psi^\dagger = |\psi\rangle\langle \psi| : \text{the corresponding rank one projection, or} \]

- a pure state of \(\mathcal{B}(\mathcal{H}) \), an element of \(\mathcal{B}(\mathcal{H})^* \) via duality

\[(A, \rho) := \text{tr}(A \rho^\dagger) \]

- an element of the projective space \(\mathbb{CP}^{d-1} \)

Mixed states: \(\rho = \sum_\alpha p_\alpha |\psi_\alpha\rangle\langle \psi_\alpha| \) with \(\sum_\alpha p_\alpha = 1 \)

The set of mixed states coincides with \(\mathcal{D}(\mathcal{H}) = \mathcal{PSD} \cap \{ \text{tr}(\cdot) = 1 \} \)
Measurements

\[|\langle \psi | e_j \rangle|^2 = \langle e_j | \psi \rangle \langle \psi | e_j \rangle = \langle e_j | \rho | e_j \rangle = \text{tr} \left(\rho | e_j \rangle \langle e_j | \right) : \]

the probability of \(j \)th outcome under measurement

“in the basis \((e_j) \)” for \(\rho = |\psi\rangle \langle \psi| \), or general \(\rho \)

More general measurements schemes (POVM):

Given \(P_i \in \mathcal{PSD} \) with \(\sum_i P_i = \text{Id} \), the probability of

the \(i \)th outcome is \(\text{tr}(\rho P_i) \)

In general, \(P_i \)'s do not need to be projections
Bi- or multipartite systems, entanglement

m systems (or particles) : $\mathcal{K} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_m$

Example: our apparatus and environment $\mathcal{K} = \mathcal{H} \otimes \mathcal{E}$

Pure separable state (product vector): $\psi = \xi \otimes \eta$

General separable states:

$$S = \{ \sum_{\alpha} p_{\alpha} \left| \psi_{\alpha} \right\rangle \left\langle \psi_{\alpha} \right| : \psi_{\alpha} \text{ product vectors} \}$$

Entangled states: $\mathcal{D} \setminus S$

$\text{conv} \left(- \mathcal{D} \cup \mathcal{D} \right) = \text{the unit ball of trace class}$

$\text{conv} \left(- S \cup S \right) = \text{the unit ball of the projective tensor product of trace class spaces on respective subsystems}$
Partial transpose, Peres-Horodecki criterion

Bipartite system: $K = \mathcal{H}_1 \otimes \mathcal{H}_2$

Partial transpose $B(K) \xrightarrow{T_2} B(K)$: $T_2(\rho_1 \otimes \rho_2) = \rho_1 \otimes \rho_2^t$ etc.

Easy: ρ separable \Rightarrow $T_2(\rho)$ separable \Rightarrow $T_2(\rho) \in PSD$

Criterion: $T_2(\rho) \not\in PSD \Rightarrow \rho$ entangled

“\Leftrightarrow” only for 2×2 and 2×3 systems

(Størmer-Woronowicz)

PPT states: $\mathcal{PPT} := \mathcal{D} \cap T_2^{-1}(\mathcal{D})$

Entangled PPT states: example of undistillable entanglement
(not defined)
Quantum vs. classical correlations, Tsirelson bound

$X_1, X_2, \ldots, Y_1, Y_2, \ldots$ random variables; $\|X_j\|_\infty, \|Y_k\|_\infty \leq 1$

Covariance matrix: $(\mathbb{E}X_j Y_k)_{j,k}$

Possible covariance matrices: $C := \text{conv}\{ (\delta_j \eta_k)_{j,k} : \delta_j, \eta_k = \pm 1 \}$

C - a polytope; faces \sim Bell inequalities

Quantum covariance matrices:

$Q := \{ (\text{tr}(\rho(U_j \otimes V_k)))_{j,k} : \rho \in \mathcal{D} (\mathcal{H}_1 \otimes \mathcal{H}_2), \|U_j\|_\infty, \|V_k\|_\infty \leq 1 \}$

Tsirelson: $Q = \text{conv}\{ (\langle u_j | v_k \rangle)_{j,k} : u_j, v_k \in \mathcal{H}, |u_j|, |v_k| \leq 1 \}$

In particular, $C \subsetneq Q \subset K_G^R C$
Quantum operations, channels

Evolution of a (closed) system in discrete time:
\[\psi = |\psi\rangle \text{ input, } U\psi = U|\psi\rangle \text{ output, } U \text{ unitary (or an isometry)} \]

In the language of states:
\[|\psi\rangle\langle\psi| \rightarrow U|\psi\rangle\langle\psi|U^\dagger \]

Quantum operation (channel)
\[\rho \rightarrow \Phi(\rho) = U\rho U^\dagger \]
(valid also for mixed states)

These are examples of “elementary” completely positive maps. For open systems, quantum formalism allows also other CP maps as quantum operations. However, by Stinespring-Kraus-Choi theorem all such maps can be “reduced” to elementary ones
\[\rho \rightarrow \Phi(\rho) = \sum_j B_j \rho B_j^\dagger \]
Quantum operations via partial trace

\[\mathcal{K} = \mathcal{H} \otimes \mathcal{E} \text{ (e.g., our apparatus and environment)} \]

Accessible part of a product state \(\xi \otimes \eta \) is just \(\xi \)

Accessible part of \(\varphi \) is \(\text{tr}_\mathcal{E}(|\varphi\rangle\langle\varphi|) \), where \(\text{tr}_\mathcal{E} \) is the partial trace induced by \(\text{tr}_\mathcal{E}(\sigma \otimes \tau) = \text{tr}(\tau)\sigma \), and similarly for general states

Let \(V : \mathcal{H} \to \mathcal{K} = \mathcal{H} \otimes \mathcal{E} \) an isometry, \(|\psi\rangle \to V|\psi\rangle \)

Consider the following quantum operation:

\[\Phi(|\psi\rangle\langle\psi|) = \text{tr}_\mathcal{E}(V|\psi\rangle\langle\psi|V^\dagger) = \text{tr}_2(V|\psi\rangle\langle\psi|V^\dagger) \quad \text{and, generally,} \]

\[\Phi(\rho) = \text{tr}_\mathcal{E}(V\rho V^\dagger) = \text{tr}_2(V\rho V^\dagger) \]

Equivalent to Stinespring-Kraus-Choi representation

\[\Phi(\rho) = \sum_i B_i \rho B_i^\dagger : V = \sum_i B_i \otimes e_i, \text{ so this is the general case} \]
Channels as subspaces

Quantum operations on $\mathcal{H} = \mathbb{C}^d$ are really d-dimensional subspaces $\mathcal{W} = V(\mathbb{C}^d) \subset \mathbb{C}^d \otimes \mathbb{C}^k$

The isometry V is not important: corresponds to fixing a basis of \mathcal{W}

Examples:
- $k = 1$ or, more generally, $V(\xi) = \xi \otimes \eta$ (fixed η) \Rightarrow $\Phi(|\xi\rangle\langle\xi|) = \text{tr}_2(|\xi \otimes \eta\rangle\langle\xi \otimes \eta|) = |\xi\rangle\langle\xi| \text{ tr}(|\eta\rangle\langle\eta|) = |\xi\rangle\langle\xi|$, or $\Phi = I_{\mathcal{M}_d}$
- $V(\xi) = \eta \otimes \xi$ \Rightarrow $\forall \rho$ $\Phi(\rho) = |\eta\rangle\langle\eta|$
- $V = k^{-1/2} \sum_{i=1}^k U_i \otimes e_i$, U_i's i.i.d. random unitaries

If instead of U_i's we had i.i.d. Gaussian matrices, the range of V would be a Haar-random subspace of $\mathbb{C}^d \otimes \mathbb{C}^k$

$\Phi(\rho) = k^{-1} \sum_i U_i \rho U_i \dagger$
Range of a channel and the Schmidt decomposition

\(\mathcal{W} \) associated to \(\Phi \)

For a pure state \(\varphi = V \psi \in \mathcal{W} \), the accessible part \(\text{tr}_2(\varphi \langle \varphi \rvert) \) of \(\varphi \), or \(\Phi(\varphi \langle \varphi \rvert) \), is simply encoded in its “Schmidt decomposition”

\[
\varphi = \sum_j s_j u_j \otimes v_j
\]

\((u_j), (v_j)\) are orthonormal sequences in \(\mathbb{C}^d \) and \(\mathbb{C}^k \)

This is more or less SVD of the matrix

\[
A = \sum_j s_j |u_j \rangle \langle v_j |
\]

that can be identified with \(\varphi \)
The image of a pure state $|\psi\rangle\langle\psi|$ under Φ

$$\Phi(|\psi\rangle\langle\psi|) = \text{tr}_2(|\varphi\rangle\langle\varphi|) = \sum_{j} s_j^2 |u_j\rangle\langle u_j|$$

Verification:

$$\text{tr}_2(|\varphi\rangle\langle\varphi|) = \text{tr}_2 \left(|\sum_{i} s_i u_i \otimes v_i\rangle\langle \sum_{j} s_j u_j \otimes v_j| \right)$$

$$= \sum_{i,j} s_i s_j |u_i\rangle\langle u_j| \text{tr}(|v_i\rangle\langle v_j|)$$

$$= \sum_{j} s_j^2 |u_j\rangle\langle u_j|$$

Morale: important to understand the patterns of singular numbers of A as A varies over an m-dimensional subspace \mathcal{W} of the space of $d \times k$ matrices
For future reference

If $A = \sum_j s_j |u_j\rangle\langle v_j|$ is the matrix identified with φ, then

$$\text{tr}_2(|\varphi\rangle\langle \varphi|) = \sum_j s_j^2 |u_j\rangle\langle u_j| = AA^\dagger$$
Quantum channels, capacities and such

“One-shot” capacity of Φ (for transmitting classical information)

$$\chi(\Phi) := \max_{p,\rho} S(\Phi\left(\sum_\alpha p_\alpha \rho_\alpha\right)) - \sum_\alpha p_\alpha S(\Phi(\rho_\alpha))$$

where $S(\rho) = -\text{tr}(\rho \log \rho)$ is the von Neumann entropy

($= \sum_j q_j \log(1/q_j)$, if q_j’s are eigenvalues of ρ)

The “true” capacity is

$$\chi^\infty(\Phi) := \lim_{n \to \infty} \frac{1}{n} \chi(\Phi \otimes \Phi \otimes \ldots \otimes \Phi) \quad (n \text{ fold product})$$
Additivity problems

Is $\chi^\infty(\cdot)$ additive? I.e., is $\chi^\infty(\Phi \otimes \Psi) = \chi^\infty(\Phi) + \chi^\infty(\Psi)$?

This would follow if $\chi(\cdot)$ was additive or even (Shor 2004 and others) if the following much simpler quantity was additive

$$S_{\min}(\Phi) := \min_{\rho \in \mathcal{D}(\mathbb{C}^m)} S(\Phi(\rho))$$

S_{\min} is called the “minimum output entropy”
Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from additivity of the minimum output p-Rényi entropy

$$S_{p}^{\min}(\Phi) := \min_{\rho \in \mathcal{D}(\mathbb{C}^m)} S_{p}(\Phi(\rho))$$

for $p > 1$, where $S_{p}(\sigma) := \frac{1}{1-p} \log(\text{tr} \sigma^p) = \frac{p}{1-p} \log \| \sigma \|_p$, where $\| \tau \|_p = (\text{tr}(\tau^\dagger \tau)^{p/2})^{1/p}$ is the Schatten p-norm. (Let $p \to 1$.)

Modulo normalizing factors and logarithmic change of variables, $S_{p}^{\min}(\Phi)$ is equivalent to $\max_{\rho \in \mathcal{D}(\mathbb{C}^m)} \| \Phi(\rho) \|_p$, or $\| \Phi \|_{1 \to p}$. Additivity of $S_{p}^{\min}(\Phi)$ is equivalent to multiplicativity of $\| \Phi \|_{1 \to p}$.
Additivity/multiplicativity problems - recapitulation

For completely positive (trace preserving) maps

\[S_{\text{min}}(\Phi \otimes \Psi) \overset{?}{=} S_{\text{min}}(\Phi) + S_{\text{min}}(\Psi) \]

\[\|\Phi \otimes \Psi\|_{1 \rightarrow p} \overset{?}{=} \|\Phi\|_{1 \rightarrow p} \|\Psi\|_{1 \rightarrow p} \quad (p > 1) \]

The mins and the norms are attained on pure states, so all these quantities depend on the patterns of eigenvalues of \(\Phi(|\psi\rangle\langle\psi|) \).

In view of prior remarks, this is equivalent to understanding the patterns of singular numbers of matrices varying over \(m \)-dimensional subspaces \(\mathcal{W} \) of the space of \(d \times k \) matrices.

“No” and “No” (Hayden-Winter 2008, Hastings 2009)
Focus on $\| \Phi \|_{1 \rightarrow p}$

Let \mathcal{W} be the m-dimensional subspace of $\mathbb{C}^d \otimes \mathbb{C}^k$ (or $\mathcal{M}_{d \times k}$) associated with Φ

$$\| \Phi \|_{1 \rightarrow p} = \max_{\varphi \in \mathcal{W}, \| \varphi \|_1 = 1} \| \text{tr}_2 (|\varphi \rangle \langle \varphi |) \|_p$$

If $\varphi = \sum_j s_j u_j \otimes v_j$, this becomes

$$\| \sum_j s_j^2 |u_j \rangle \langle u_j| \|_p = \left(\sum_j s_j^{2p} \right)^{1/p} = \| A \|_{2p} = \| AA^\dagger \|_p,$$

where $A = \sum_j s_j |u_j \rangle \langle v_j|$ is the $d \times k$ matrix identified with φ.

In other words

$$\| \Phi \|_{1 \rightarrow p}^{1/2} = \max_{A \in \mathcal{W}} \frac{\| A \|_{2p}}{\| A \|_2}$$
Milman’s version of Dvoretzky’s theorem

Consider the n-dimensional Euclidean space (over \mathbb{R} or \mathbb{C}) endowed with the Euclidean norm $|\cdot|$ and some other norm $\|\cdot\|$ such that, for some $b > 0$, $\|\cdot\| \leq b|\cdot|$. Denote $M = \mathbb{E}\|X\|$, where X is a random variable uniformly distributed on the unit Euclidean sphere. Let $\varepsilon > 0$ and let $m \leq c\varepsilon^2(M/b)^2n$, where $c > 0$ is an appropriate (computable) universal constant. Then, for most m-dimensional subspaces E we have

$$\forall x \in E, \quad (1 - \varepsilon)M|x| \leq \|x\| \leq (1 + \varepsilon)M|x|.$$

A similar statement holds for Lipschitz functions in place of norms.
Dvoretzky’s theorem for Schatten classes (FLM ‘77)

For the Schatten norm $\| \cdot \|_q$ with $q = 2p > 2$, $k = d$ and $\varepsilon = \frac{1}{2}$ we get $b = 1$ and $M \sim d^{1/q-1/2}$, hence if

$$m \sim M^2 d^2 \sim \left(d^{1/q-1/2} \right)^2 d^2 = d^{1+2/q} = d^{1+1/p},$$

then for a generic m-dimensional subspace \mathcal{W} of \mathcal{M}_d

$$\forall A \in \mathcal{W} \quad d^{1/q-1/2} \|A\|_2 \leq \|A\|_q \leq C d^{1/q-1/2} \|A\|_2$$

Accordingly, for the associated (random) channel Φ

$$\|\Phi\|_{1 \to p} = \left(\max_{A \in \mathcal{W}} \frac{\|A\|_{2p}}{\|A\|_2} \right)^2 \leq \left(C d^{1/q-1/2} \right)^2 = C^2 d^{1/p-1}$$

which is $\ll 1$ for large d and nearly as small as it can be:

$$\|\Phi\|_{1 \to p} \geq d^{1/p-1} \text{ always.}$$

So it is clear that we are up to something.
Why $M \sim d^{1/q-1/2}$?

If $q = \infty$, $\| \cdot \|_\infty = \| \cdot \|_{op}$, so $\mathbb{E} \| X \|_{op} \sim 2d^{-1/2}$

(2 is the same as in the Wigner semi-circle law)

Obviously $\mathbb{E} \| X \|_2 = 1$

For $q \in (2, \infty)$ we interpolate (Hölder inequality)
The counterexample to multiplicativity

Need \[\|\Phi \otimes \Psi\|_{1 \rightarrow p} > \|\Phi\|_{1 \rightarrow p} \|\Psi\|_{1 \rightarrow p} \]

\(\Psi = \Phi? \Psi = \Phi' \) (independent copy)?

What works is \(\Psi = \Phi! \)

Fact 1: If \(\Phi : \mathcal{B}(\mathbb{C}^m) \to \mathcal{B}(\mathbb{C}^d) \) is associated to an \(m \)-dimensional subspace of \(\mathbb{C}^d \otimes \mathbb{C}^k \), then there is an input state \(\sigma \in \mathcal{D}(\mathbb{C}^m \otimes \mathbb{C}^m) \) such that \((\Phi \otimes \Phi)(\sigma) \) has an eigenvalue \(\geq \frac{m}{kd} \), hence \(\|\Phi \otimes \Phi\|_{1 \rightarrow p} \geq \frac{m}{kd} \)

In our setting \(\frac{m}{kd} \sim \frac{d^{1+1/p}}{d^2} = d^{1/p-1} \), so

\[\|\Phi \otimes \Phi\|_{1 \rightarrow p} \geq cd^{1/p-1} \]

while

\[\|\Phi\|_{1 \rightarrow p} \cdot \|\Phi\|_{1 \rightarrow p} = (\|\Phi\|_{1 \rightarrow p})^2 \leq (C^2 d^{1/p-1})^2 \ll cd^{1/p-1} \]
The counterexample to additivity

of $S_{\min}(\cdot)$ is more subtle. The analysis of a single random channel
is based on two facts

Fact 2 : $\forall \sigma \in \mathcal{D}(\mathbb{C}^d) \ S(\sigma) \geq S\left(\frac{\text{Id}}{d}\right) - d \|\sigma - \frac{\text{Id}}{d}\|_{HS}^2$

Consequently $\forall \Phi : \mathcal{M}_m \to \mathcal{M}_d$

$$S_{\min}(\Phi) \geq \log(d) - d \cdot \max_{\rho \in \mathcal{D}(\mathbb{C}^d)} \|\Phi(\rho) - \frac{\text{Id}}{d}\|_{HS}^2$$

This reduces the study of the somewhat involved quantity $S_{\min}(\cdot)$
to upper-bounding $\|\sigma - \frac{\text{Id}}{d}\|_{HS}$ for σ in the range of Φ
Fact 3: If $k \sim d^2$, $m \sim d^2$, then, for a typical m-dimensional subspace $\mathcal{W} \subset \mathcal{M}_{d \times k}$,

$$
\max_{A \in \mathcal{W}, \|A\|_{HS} = 1} \left\| AA^\dagger - \frac{\text{Id}}{d} \right\|_{HS} \leq \frac{C'}{d}
$$

Recall: $AA^\dagger = \Phi(|\psi\rangle\langle\psi|)$, where ψ is the unit vector corresponding to A and Φ is the channel associated to \mathcal{W}.

Combining the estimates

$$
S_{\min}(\Phi) \geq \log(d) - d \left(\frac{C'}{d} \right)^2 = \log(d) - O \left(\frac{1}{d} \right)
$$

On the other hand, the “large eigenvalue” argument gives for the composite channel

$$
S_{\min}(\Phi \otimes \Phi) \leq \log(d^2) - \Omega \left(\frac{\log d}{d} \right)
$$
Payback to geometric functional analysis

Fact 3 essentially says that \mathcal{W}, when endowed with the Schatten 4-norm, is $1 + O\left(\frac{1}{d^2}\right)$-Euclidean.

On the other hand, applying \textit{directly} Dvoretzky’s theorem for that choice of parameters gives only $1 + O\left(\frac{1}{\sqrt{d}}\right)$.
Is this good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement allows using quantum channels more efficiently than previously thought: GOOD

But to exploit this opportunity one would need explicit maps for reasonable values of the parameters m, d