Representing Polyhedra by Few Polynomials

Martin Henk

Banff, February, 2010
Why?

- By a theorem of Bröcker, Scheiderer in real algebraic geometry, every polyhedron in \mathbb{R}^n can be described by a few ($\approx n^2$) polynomial inequalities.
Why?

- By a theorem of Bröcker, Scheiderer in real algebraic geometry, every polyhedron in \mathbb{R}^n can be described by a few ($\approx n^2$) polynomial inequalities.

- Martin Grötschel Impact for hard combinatorial optimization problems?, Constructions?, Approximations by polynomial inequalities?
- Bröcker, Scheiderer, ’84, . . . , ’89. Every basic closed semi-algebraic set $S \subset \mathbb{R}^n$ can be represented by at most $n(n + 1)/2$ polynomial inequalities, i.e., there exist $p_1, \ldots, p_{n(n+1)/2} \in \mathbb{R}[x]$ such that

$$S = \{ x \in \mathbb{R}^n : p_1(x) \geq 0, \ldots, p_{n(n+1)/2}(x) \geq 0 \}.$$
Bröcker, Scheiderer, ’84,...,’89. Every basic closed semi-algebraic set $S \subset \mathbb{R}^n$ can be represented by at most $n(n + 1)/2$ polynomial inequalities, i.e., there exist $p_1, \ldots, p_{n(n+1)/2} \in \mathbb{R}[x]$ such that

$$S = \{ x \in \mathbb{R}^n : p_1(x) \geq 0, \ldots, p_{n(n+1)/2}(x) \geq 0 \}.$$

In the case of basic open semi-algebraic sets, n polynomials suffice, and both bounds are best possible.
• **Open:** For instance, the positive orthant
\[\{ x \in \mathbb{R}^n : x_i > 0, \ 1 \leq i \leq n \} \] cannot be described by less than \(n \) strict polynomial inequalities.
• **Open:** For instance, the positive orthant
\(\{ x \in \mathbb{R}^n : x_i > 0, 1 \leq i \leq n \} \) cannot be described by less than \(n \) strict polynomial inequalities.

• **Closed:** For instance, the family of stacked cubes cannot be described by less than \(n(n + 1)/2 \) polynomial inequalities.
• **Open:** For instance, the positive orthant \(\{ x \in \mathbb{R}^n : x_i > 0, 1 \leq i \leq n \} \) cannot be described by less than \(n \) strict polynomial inequalities.

• **Closed:** For instance, the family of stacked cubes cannot be described by less than \(n(n + 1)/2 \) polynomial inequalities.

• Can the bound be improved, e.g., for convex sets?
Consequences for polyhedra

- Every polyhedron

\[P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}, \]

given as the intersection of finitely many linear inequalities, can be described by at most \(n(n + 1)/2 \) polynomial inequalities. The interior of a polyhedron can even be described by \(n \) polynomials.

Can the bound be improved? Yes!
Can we (really) construct these (few) polynomials? It depends...!
Consequences for polyhedra

• Every polyhedron

\[P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}, \]

given as the intersection of finitely many linear inequalities, can be described by at most \(n(n + 1)/2 \) polynomial inequalities. The interior of a polyhedron can even be described by \(n \) polynomials.

• Can the bound be improved?
Consequences for polyhedra

- Every polyhedron

\[P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}, \]

given as the intersection of finitely many linear inequalities, can be described by at most \(n(n + 1)/2 \) polynomial inequalities. The interior of a polyhedron can even be described by \(n \) polynomials.

- Can the bound be improved?

 Yes!
Consequences for polyhedra

- Every polyhedron

\[P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i, 1 \leq i \leq m \}, \]

given as the intersection of finitely many linear inequalities, can be described by at most \(n(n + 1)/2 \) polynomial inequalities. The interior of a polyhedron can even be described by \(n \) polynomials.

- Can the bound be improved?

Yes!

- Can we (really) construct these (few) polynomials?
Consequences for polyhedra

- Every polyhedron

\[P = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}, \]

given as the intersection of finitely many linear inequalities, can be described by at most \(n(n + 1)/2 \) polynomial inequalities. The interior of a polyhedron can even be described by \(n \) polynomials.

- Can the bound be improved?

 Yes!

- Can we (really) construct these (few) polynomials?

 It depends...!
(Trivial) Examples
(Trivial) Examples

- The (regular) n-cube

$$C_n = \{x \in \mathbb{R}^n : -1 \leq x_i \leq 1, 1 \leq i \leq n\}$$
(Trivial) Examples

- The (regular) n-cube (or any other parallelepiped)

\[C_n = \{ x \in \mathbb{R}^n : -1 \leq x_i \leq 1, \; 1 \leq i \leq n \} \]

\[= \{ x \in \mathbb{R}^n : (x_i)^2 \leq 1, \; 1 \leq i \leq n \} \].
(Trivial) Examples

- The n-simplex

\[T_n = \{ x \in \mathbb{R}^n : x_i \geq 0, \ x_1 + \cdots + x_n \leq 1 \} \]
(Trivial) Examples

- The n-simplex

\[
T_n = \{ x \in \mathbb{R}^n : x_i \geq 0, x_1 + \cdots + x_n \leq 1 \}
= \left\{ x \in \mathbb{R}^n : x_i \left(1 - \sum_{k=i}^{n} x_k \right) \geq 0, 1 \leq i \leq n \right\}.
\]
The regular n-crosspolytope

\[C_n^* = \left\{ x \in \mathbb{R}^n : \sum |x_i| \leq 1 \right\} \]
The regular n-crosspolytope

$$C_n^* = \left\{ x \in \mathbb{R}^n : \sum |x_i| \leq 1 \right\}$$

= ?
The regular \(n \)-crosspolytope

\[
C_n^* = \left\{ x \in \mathbb{R}^n : \sum |x_i| \leq 1 \right\}
\]

Bosse, 2003, \(n = 3 \):

\(p_{1/2} \) = product of 4 facet defining inequalities which do not have an edge in common.
• The regular n-crosspolytope

\[C_n^* = \left\{ x \in \mathbb{R}^n : \sum |x_i| \leq 1 \right\} \]

• Bosse, 2003, $n = 3$:

\[p_{1/2} = \text{product of 4 facet defining inequalities which do not have an edge in common.} \]

\[p_0 = \text{circumsphere of } C_3^*. \]
Each facet defining linear polynomial $b_i - a_i$, x^i is a factor of one of the polynomials in a polynomial representation. Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

For every k-face there exist at least $n - k$ polynomials in a polynomial representation vanishing on aff F. Hence, a polynomial representation of a polyhedron having a vertex consists of at least n polynomials.

For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.

For bi-pyramids? Representing Polyhedra by Few Polynomials 8 / 27
• Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.

Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

• For every k-face there exist at least $n-k$ polynomials in a polynomial representation vanishing on a facet F.

Hence, a polynomial representation of a polyhedron having a vertex consists of at least n polynomials.

• For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.

• For bi-pyramids?
Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.

- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

- Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.
 - Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

- For every k-face there exist at least $n - k$ polynomials in a polynomial representation vanishing on $\text{aff } F$.

- Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.
 - Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

- For every k-face there exist at least $n - k$ polynomials in a polynomial representation vanishing on $\text{aff } F$.
 - Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.
• Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.
 ▶ Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

• For every k-face there exist at least $n - k$ polynomials in a polynomial representation vanishing on $\text{aff } F$.
 ▶ Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.

• For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.

- Each facet defining linear polynomial $b_i - \langle a_i, x \rangle$ is a factor of one of the polynomials in a polynomial representation.
 - Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

- For every k-face there exist at least $n - k$ polynomials in a polynomial representation vanishing on $\text{aff } F$.
 - Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.

- For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.

- For bi-pyramids?
Dimension 2

- vom Hofe, 1992. For each polygon we can construct 3 polynomial inequalities representing the polygon.
Dimension 2

- **vom Hofe, 1992.** For each polygon we can construct 3 polynomial inequalities representing the polygon.

- **Bernig, 1998.** For each (bounded) polygon we can construct 2 polynomial inequalities representing the polygon.
Let $P = \{x \in \mathbb{R}^2 : \langle a_i, x \rangle \leq b_i, 1 \leq i \leq m \}$ be a polygon.
Let $P = \{x \in \mathbb{R}^2 : \langle a_i, x \rangle \leq b_i, 1 \leq i \leq m \}$ be a polygon.

$$p_1(x) = (b_1 - \langle a_1, x \rangle) \cdot (b_2 - \langle a_2, x \rangle) \cdot \ldots \cdot (b_m - \langle a_m, x \rangle)$$
Let $P = \{ x \in \mathbb{R}^2 : \langle a_i, x \rangle \leq b_i, 1 \leq i \leq m \}$ be a polygon.

$$p_1(x) = (b_1 - \langle a_1, x \rangle) \cdot (b_2 - \langle a_2, x \rangle) \cdot \ldots \cdot (b_m - \langle a_m, x \rangle)$$

$$p_0(x) = \text{concave polynomial through the vertices}$$

\{p_1(x) \geq 0\}

\{p_0(x) \geq 0\}
• \(p_0(x) \) is of the form

\[
p_0(x) = 1 - \sum_{i=1}^{m} \lambda_i \left[\frac{\langle w_i, x \rangle - l_i}{u_i - l_i} \right]^{2k},
\]

where \(w_i \) are normal vectors of support hyperplanes of the vertices,

\[
 l_i = \min_{x \in P} \langle w_i, x \rangle, \quad u_i = \max_{x \in P} \langle w_i, x \rangle
\]

and \(\lambda_i > 0 \) and \(k \) are chosen such that \(p_0(x) \) vanishes on the vertices.
• $p_0(x)$ is of the form

$$p_0(x) = 1 - \sum_{i=1}^{m} \lambda_i \left[\frac{\langle w_i, x \rangle - l_i}{u_i - l_i} \right]^{2k},$$

where w_i are normal vectors of support hyperplanes of the vertices,

$$l_i = \min_{x \in P} \langle w_i, x \rangle, \quad u_i = \max_{x \in P} \langle w_i, x \rangle$$

and $\lambda_i > 0$ and k are chosen such that $p_0(x)$ vanishes on the vertices.

• In particular, the degree depends on metric properties of the polygon.
The obvious generalization of that 2-dimensional approach to consider polynomials

\[p_k(x) = \prod \text{support hyperplanes of } k\text{-faces}, \quad k = 1, \ldots, n - 1, \]

\[p_0(x) = \text{concave polynomial through the vertices} \]

does not work for \(n \geq 3 \) (see, e.g., crosspolytope).
- Bosse & Grötschel & H., 2005. For every n-dimensional polyhedron we can construct $2n$ polynomial inequalities representing the polytope.
• Bosse&Grötschel&H., 2005. For every n-dimensional polyhedron we can construct $2n$ polynomial inequalities representing the polytope.

• Consequence: Let

$$S = \left\{ x \in \mathbb{R}^n : f_1(x) \geq 0, \ldots, f_m(x) \geq 0 \right\}$$

with $\deg(f_i) \leq d$. Then we can find $2\binom{n+d}{n} - 2$ polynomials representing the set S.

Simple polytopes seem to be simpler

- Averkov&H., 2008. For every n-dimensional simple polytope we can construct n polynomial inequalities representing the polytope.
Simple polytopes seem to be simpler

- Averkov&H., 2008. For every n-dimensional simple polytope we can construct n polynomial inequalities representing the polytope.

- Rough idea:
 - Let $l_i(x) = b_i - \langle a_i, x \rangle$ and let

$$P = \{ x \in \mathbb{R}^n : l_i(x) \geq 0, 1 \leq i \leq m \}.$$
Simple polytopes seem to be simpler

- Averkov&H., 2008. For every \(n \)-dimensional simple polytope we can construct \(n \) polynomial inequalities representing the polytope.

- Rough idea:
 - Let \(l_i(x) = b_i - \langle a_i, x \rangle \) and let
 \[
 P = \{ x \in \mathbb{R}^n : l_i(x) \geq 0, \ 1 \leq i \leq m \}.
 \]
 - Let
 \[
 \sigma_j(x) = \sum_{J \subseteq \{1,...,m\}} \prod_{k \in J} l_k(x)
 \]
 be the \(j \)-th elementary symmetric polynomial of \(l_1(x), \ldots, l_m(x) \).
$P = \{ x \in \mathbb{R}^n : \sigma_i(x) \geq 0, \ 1 \leq i \leq m \}$
Let $x \in \mathbb{R}^n$ such that $\sigma_i(x) \geq 0$, $1 \leq i \leq m$. Let

$$f(t) = \prod_{i=1}^{m} (l_i(x) + t) = \sum_{i=0}^{m} \sigma_i(x) t^{m-i}.$$

All coefficients are non-negative and hence, the roots $-l_i(x)$, $1 \leq i \leq m$, are non-positive, i.e., $x \in P$.
\[P = \{ x \in \mathbb{R}^n : \sigma_i(x) \geq 0, \ 1 \leq i \leq m \}. \]
$P = \{ x \in \mathbb{R}^n : \sigma_i(x) \geq 0, \ 1 \leq i \leq m \}.$

If P is simple then there exists an $\epsilon > 0$ such that for $x \in P + \epsilon B_n$

$$\sigma_i(x) \geq 0, \ 1 \leq i \leq m - n.$$
Let \(x \in P \). Since \(P \) is simple, there exist at most \(n \) linear forms \(l_i(x) \) vanishing at \(x \).

- Hence at least \(m - n \) linear forms are positive at \(x \) and so

\[
\sigma_j(x) > 0, \quad j \leq m - n.
\]
Let $x \in P$. Since P is simple, there exist at most n linear forms $l_i(x)$ vanishing at x.

- Hence at least $m - n$ linear forms are positive at x and so
 \[\sigma_j(x) > 0, \quad j \leq m - n. \]

- Thus by continuity we can find an $\epsilon > 0$ such that for all $x \in P + \epsilon B_n$
 \[\sigma_j(x) \geq 0, \quad j \leq m - n. \]
$P = \{x \in \mathbb{R}^n : \sigma_i(x) \geq 0, \ 1 \leq i \leq m\}$

- If P is simple then there exists an $\epsilon > 0$ such that for $x \in P + \epsilon B_n$
 \[\sigma_i(x) \geq 0, \ 1 \leq i \leq m - n. \]

- Thus

 \[P = \{x \in \mathbb{R}^n : \sigma_{m-n+i+1}(x) \geq 0, \ 0 \leq i \leq n - 1, \ p_\epsilon(x) \geq 0\} , \]

where $\{x \in \mathbb{R}^n : p_\epsilon(x) \geq 0\}$ is a "good" approximation of P.
A simple polytope $P = \{ x \in \mathbb{R}^n : l_i(x) \geq 0, 1 \leq i \leq m \}$ is described by the n polynomial inequalities

$$p_i(x) := \sigma_{m-n+i+1}(x) \geq 0, \quad 1 \leq i \leq n-1, \quad p_0(x) \geq 0,$$

where $p_0(x)$ is a concave polynomial passing through the vertices of P and which approximates P ϵ-well.
A simple polytope $P = \{ x \in \mathbb{R}^n : l_i(x) \geq 0, 1 \leq i \leq m \}$ is described by the n polynomial inequalities

$$p_i(x) := \sigma_{m-n+i+1}(x) \geq 0, \quad 1 \leq i \leq n-1, \quad p_0(x) \geq 0,$$

where $p_0(x)$ is a concave polynomial passing through the vertices of P and which approximates P ϵ-well.

In particular, $p_i(x)$ vanishes on the i-faces of P, $i = 0, \ldots, n - 1$.
Example

• For a regular simplex $P \subseteq \mathbb{R}^3$ we can choose

$$l_1(x) = 1 + x_1 - x_2 + x_3, \quad l_2(x) = 1 - x_1 + x_2 + x_3$$

$$l_3(x) = 1 + x_1 + x_2 - x_3, \quad l_4(x) = 1 - x_1 - x_2 - x_3.$$
Example

• For a regular simplex $P \subseteq \mathbb{R}^3$ we can choose

$$l_1(x) = 1 + x_1 - x_2 + x_3, \quad l_2(x) = 1 - x_1 + x_2 + x_3$$
$$l_3(x) = 1 + x_1 + x_2 - x_3, \quad l_4(x) = 1 - x_1 - x_2 - x_3.$$

•

$$p_2 = l_1 l_2 l_3 l_4$$
$$p_1 = l_1 l_2 l_3 + l_1 l_2 l_4 + l_1 l_3 l_4 + l_2 l_3 l_4$$
$$= 4 \left(1 - x_1^2 - x_2^2 - x_3^2 - 2 x_1 x_2 x_3 \right)$$
$$p_0 = 3 - x_1^2 - x_2^2 - x_3^2.$$
For $J \subset \{0, 1, 2\}$ let $P_J = \{x \in \mathbb{R}^3 : p_j(x) \geq 0, j \in J\}$
For $J \subset \{0, 1, 2\}$ let $P_J = \{ x \in \mathbb{R}^3 : p_j(x) \geq 0, j \in J \}$.
The general case

 If every n-polytope can be described by n polynomials then also any unbounded n-dimensional polyhedron.
The general case

 If every n-polytope can be described by n polynomials then also any unbounded n-dimensional polyhedron.

For every 3-dimensional polyhedra we can construct 3 polynomials representing the polyhedra.
Averkov & Bröcker, 2010. Let

\[S = \{ x \in \mathbb{R}^n : f_i(x) \geq 0, \ 1 \leq i \leq m \} \]

be a basic closed semi-algebraic set.

- If all \(f_i(x) \) are linear, i.e., \(S \) is a polyhedron, then \(S \) can be represented by \(n \) polynomials.

- The proofs are "semi-effective".

Separation theorems based on Stone-Weierstrass approximation.
Averkov & Bröcker, 2010. Let

\[S = \{ x \in \mathbb{R}^n : f_i(x) \geq 0, \ 1 \leq i \leq m \} \]

be a basic closed semi-algebraic set.

- If all \(f_i(x) \) are linear, i.e., \(S \) is a polyhedron, then \(S \) can be represented by \(n \) polynomials.

- Let \(d \) be the maximal number of polynomials vanishing at a point. Then there exist \(d + 1 \) polynomials \(p_0, \ldots, p_d \) representing \(S \).
Averkov & Bröcker, 2010. Let

\[S = \{ x \in \mathbb{R}^n : f_i(x) \geq 0, \ 1 \leq i \leq m \} \]

be a basic closed semi-algebraic set.

- If all \(f_i(x) \) are linear, i.e., \(S \) is a polyhedron, then \(S \) can be represented by \(n \) polynomials.

- Let \(d \) be the maximal number of polynomials vanishing at a point. Then there exist \(d + 1 \) polynomials \(p_0, \ldots, p_d \) representing \(S \).
 - If there are only finitely many points where \(d \) polynomials \(f_i(x) \) vanish then \(d \) polynomials suffice.
Averkov & Bröcker, 2010. Let

\[S = \{ x \in \mathbb{R}^n : f_i(x) \geq 0, \ 1 \leq i \leq m \} \]

be a basic closed semi-algebraic set.

- If all \(f_i(x) \) are linear, i.e., \(S \) is a polyhedron, then \(S \) can be represented by \(n \) polynomials.

- Let \(d \) be the maximal number of polynomials vanishing at a point. Then there exist \(d + 1 \) polynomials \(p_0, \ldots, p_d \) representing \(S \).
 - If there are only finitely many points where \(d \) polynomials \(f_i(x) \) vanish then \(d \) polynomials suffice.

- The proofs are "semi-effective".
 - Separation theorems based on Stone-Weierstrass approximation.
How many polynomials are needed if we fix the degree?
How many polynomials are needed if we fix the degree?

- H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_1, \ldots, q_d of degree at most k and with

$$d \leq \left\lceil \frac{m}{k} \right\rceil + \lfloor \log_2(k - 1) \rfloor + 1$$

such that

$$P = \{ x \in \mathbb{R}^2 : q_i(x) \geq 0, \ 1 \leq i \leq d \}.$$
• How many polynomials are needed if we fix the degree?

- H.& Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_1, \ldots, q_d of degree at most k and with

$$d \leq \left\lceil \frac{m}{k} \right\rceil + \lfloor \log_2(k - 1) \rfloor + 1$$

such that

$$P = \{x \in \mathbb{R}^2 : q_i(x) \geq 0, 1 \leq i \leq d\}.$$
How many polynomials are needed if we fix the degree?

- H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_1, \ldots, q_d of degree at most k and with

$$d \leq \left\lceil \frac{m}{k} \right\rceil + \lfloor \log_2(k - 1) \rfloor + 1$$

such that

$$P = \{x \in \mathbb{R}^2 : q_i(x) \geq 0, \ 1 \leq i \leq d\}.$$

- Best possible for $k = O(m/\log_2 m)$.

Averkov&Bey, 2010. $d \leq \max \left\lfloor \frac{m}{k} \right\rfloor, \lfloor \log_2(m) \rfloor$, and it is best possible for any k among a certain family of polynomials.
• How many polynomials are needed if we fix the degree?

 ▶ H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_1, \ldots, q_d of degree at most k and with

 $$d \leq \left\lceil \frac{m}{k} \right\rceil + \lceil \log_2(k - 1) \rceil + 1$$

 such that

 $$P = \{ x \in \mathbb{R}^2 : q_i(x) \geq 0, \ 1 \leq i \leq d \}.$$

 ▶ Best possible for $k = O(m/ \log_2 m)$.

• Averkov&Bey, 2010. $d \leq \max \left\{ \frac{m}{k}, \log_2(m) \right\}$, and it is best possible for any k among a certain family of polynomials.
More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?
More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?

- Is it reasonable to take the product of the facet defining inequalities?
More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?

- Is it reasonable to take the product of the facet defining inequalities?

- \ldots
Thank you for your attention!