
CONES OF CONVEX FORMS

BRUCE REZNICK

Abstract. These are rough notes of my talk on 2/17/10 at BIRS 10w5007, Convex
Algebraic Geometry. Please write me if you find mistakes or want to see more detail.
(I didn’t know I was going to be writing this when I went to the conference.)
Proofs that seem ok when given verbally seem fragile in print, so I had to put in
more details. I’ve added a few new examples, or assertions of examples, where
appropriate. The organization and transitions all need work.

1. Let Fn,m denote the vector space of real homogeneous polynomials in n variables
of degree m. A function p is convex if for all x, u ∈ Rn, when we define φx,u(t) =
p(x + tu), we have φ′′x,u(0) ≥ 0. Convexity is determined by the behavior of p on all
two dimensional subspaces of Rn. Thus if q(x) = p(Mx), where M is an invertible
linear change of variables, then p is convex if and only if q is convex. If we write
pi = ∂p

∂xi
, etc., then

(1) φ′′(0;x, u) = Hes(p;x, u) :=
n∑
i=1

n∑
j=1

pij(x)uiuj.

If p ∈ Fn,m, then Hes(p;x, u) is a bihomogeneous form in (x, u) so p is convex if
and only if Hes(p) is psd. Now (new definition), we say that p is definitely convex if
Hes(p) is positive definite; in this case, for x, u ∈ Sn−1, Hes(p;x, u) will achieve a
positive minimum. For all integers r, (

∑
x2
j)
r is definitely convex.

2. Let Kn,m denote the set of convex forms in Fn,m. This talk was motivated by a
longstanding question of Pablo Parrilo about whether there exist convex forms which
are not sos and by a recent preprint of Greg Blekherman, Convex forms that are
not sums of squares, arXiv: 0910.065v1 [math.AG] 5 Oct 2009, showing that “most”
convex forms are not sos (if you fix degree and go to a large enough number of
variables). No specific examples were given there, or here, sorry to say. The reasons
it is hard to find an example include the following: (i) Our intuition overemphasizes
the monomials in which the exponents are large and deemphasizes the ones which
are smaller. For example, 99.66% of the monomials of a quartic in 100 variables are
either xixjxkx` or x2

ixjxk. (ii) The examples of psd forms which are not sos either
have many zeros (see #5 below for why those can’t be convex) or have few terms,
and these usually can’t be convex even if they are obviously sos. (iii) Greg’s talk (the
day after mine) offered another intuition: look for a form which is close to constant
on the unit sphere; that is, one which is essentially a perturbation of (

∑
j x

2
j)
m/2.
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This gives another way to get a handle on what convex forms might be even if we
don’t know yet how to make them sos. It should also be mentioned that Kn,m is
different from Pn,m and Σn,m in a fundamental way with respect to homogenization
and dehomogenization. These don’t matter for psd and sos polynomials and forms,
and one can go back and forth. These properties are decidedly false for convex forms.
Trivially, t2 − 1 is a convex polynomial and can’t be homogenized to a convex form.
More seriously, t4 + 12t2 + 1 is a very convex polynomial, and x4 + 12x2y2 +y4 is very
not convex. The cones Pn,m and Σn,m are also closed under multiplication, and Kn,m

isn’t. One can look at x2 and y2 or see #8 below.
3. If p, q ∈ Kn,m and λ > 0, then p + q, λp ∈ Kn,m, so Kn,m is a convex cone. If

p(`) → p coefficient-wise, and p(`) ∈ Kn,m, then Hes(p`) → Hes(p) pointwise, hence
p ∈ Kn,m, so Kn,m is a closed convex cone. If p is definitely convex, then the usual
perturbation argument (with x, u ∈ Sn−1) shows that p is interior to Kn,m, whereas if
p is convex but not definitely convex, and Hes(p; x̄, ū) = 0 for some x̄, ū ∈ Sn−1, then
Hes(p− t(

∑
x2
j)
m/2, x̄, ū) < 0 for t > 0, Thus the interior of Kn,m consists precisely

of the definitely convex forms in Fn,m.
4. Since φx,x(t) = (1+t)mp(x), φ′′x,x(0) = m(m−1)p(x) ≥ 0, hence p is psd. That is,

Kn,m ⊂ Pn,m. If p(x) =
(∑

j αjxj

)m
, then φx,u(t) = ((x+tu)·α)m = (x·α+t(u·α))m,

so Hes(p;x, u) = m(m− 1)(x · α)m−2(u · α)2 ≥ 0. Thus all sums of m-th powers are
convex; that is, Qn,m ⊂ Kn,m. (See Sums of even powers of real linear forms, Mem.
Amer. Math. Soc., Volume 96, Number 463, March, 1992 (MR 93h.11043) for much
more on Pn,m and Qn,m. I have scanned this Memoir and put it on my website
http://www.math.uiuc.edu/∼reznick/memoir.html).

5. Convex forms are almost positive definite: if p(a) = 0, then p vanishes to m-th
order in every direction at m. Proof: Wlog, suppose p(1, 0, . . . , 0) = 0 and suppose
that x1 occurs in some term of p. Let r ≥ 1 be the largest power of x1 that appears
and suppose the associated terms in p are xr1q(x2, ..., xn). We assume q 6= 0, so
after a linear change, we may assume that q(1, 0, . . . , 0) = 1. This would mean that
p(x1, x2, 0, . . . , 0) = xr1x

m−r
2 + lower order terms in x1, x2. Taking the 2× 2 Hessian,

we see that the leading term in x1 and then x2 is:

(2)
r(r − 1)xr−2

1 xm−r2 (m− r)(m− r − 1)xr1x
m−r−2
2 − (r(m− r)xr−1

1 xm−r−1
2 )2

= −rm(m− 1)x2r−2
1 x2m−2r−2

2

which can’t be positive, contradiction. Observe that forms in Qn,m have the same
property.

6. The following result is in the literature somewhere. I don’t know much convex
analysis, but it seems to be the same as Cor. 15.3.1 in Rockafellar’s Convex Analysis
(1970); the notes attribute it to a 1951 paper of E. Lorch which I don’t understand. V.
I. Dmitriev (see below) attributes the observation to his advisor Selim Krein (1969).
I think it is also true if p is any positive definite function which is homogeneous of
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degree m, whether polynomial or not. Let

(3) f(x2, . . . , xn) = p(1, x2, . . . , xn).

THM: Suppose p is a positive definite form in Fn,m. Then p(x1, . . . , xn) is convex if
and only if f 1/m(x2, . . . , xn) is convex.

The theorem is true, but the proof I gave in the talk is incomplete. Here’s a better
one. We will prove the theorem pointwise. If we can show that Hes(p; a, u) ≥ 0 for
all (a1, . . . , an) with a1 6= 0 iff f 1/m is convex, then by continuity, Hes(p; a, u) ≥ 0
for all a and we’re done. So assume a is given with a1 6= 0, and by homogeneity, we
may assume that a1 = 1. Let

(4)
p̃(x1, x2 . . . , xn) = p(x1, x2 + a2x1, . . . xn + anx1),

f̃(x2, . . . , xn) = p̃(1, x2, . . . xn) = f(1, x2 + a2, . . . , xn + an)

Then p and f 1/m are convex if and only if p̃ and f̃ are convex (since they involve
linear changes of variable), and we can drop the tildes and assume that we are looking
at a = (1, 0, . . . , 0). Furthermore, we are looking at a two dimensional vector space
and by making a change of variables in (x2, . . . , xn), we may assume without loss
of generality that this two-dimensional space is (x, y, 0, . . . , 0). Now, resuming the
talk’s argument, suppose

(5) p(x, y, 0, . . . , 0) = a0x
m +

(
m

1

)
a1x

m−1y +

(
m

2

)
a2x

m−2y2 + . . . .

Then the Hessian matrix, evaluated at (1, 0) is

(6) m(m− 1)

∣∣∣∣a0 a1

a1 a2

∣∣∣∣ ,
and since a0 = p(1, 0, . . . , 0) > 0, p is convex at a if and only if a0a2 ≥ a2

1. On the
other hand, we have

(7) f(t) = p(1, t) = a0 +

(
m

1

)
a1t+

(
m

2

)
a2t

2 + . . .

and a routine computation shows that

(8) (f (1/m))′′(0) = (m− 1)a
1/m−2
0 (a0a2 − a2

1).

A more complicated proof computes the Hessian of p, uses the Euler pde’s mp =∑
xipi and (m− 1)pi =

∑
xjpij to replace p11 and p1j with p, the pi’s with i ≥ 2 and

the pij’s with i, j ≥ 2. The discriminant with respect to u1 is a positive multiple (after
a change of variables) of the Hessian of f 1/m. In the interest of time and aesthetics,
I won’t write it down.

7. Greg Blekherman pointed out that the theorem below is a special case of a
result in my Uniform denominators in Hilbert’s Seventeenth Problem, Math. Z., 220
(1995), 75-98 (MR 96e:11056), see .../paper30.pdf, which is true, but the proof here
is much shorter. As with #6., it’s probably true if p is not a form, but merely is, say
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C3 on the unit sphere, to ensure that the given bounds exist. This has the amusing
implication that if p is a positive definite and somewhat smooth function on the unit
sphere, then it is the restriction to the unit sphere of a convex function. This can’t
possibly be a new theorem.

THM. If p is a positive definite form of degree m, then there exists N so that
pN := (

∑
j x

2
j)
Np is convex.

PF. Since p is pd, it is bounded away from 0 on Sn−1 and so there are uniform
upper bounds T for |∇u(f)(x)/f(x)|, for x, u ∈ Sn−1 and U for |∇2

u(f)(x)/f(x)|, for
x, u ∈ Sn−1. Since

∑
x2
i is rotation invariant, it suffices to show that pN is convex

at (1, 0, . . . , 0) in the 2-dimensional space (x, y, 0, . . . , 0). Suppose p has degree m.
We claim that if N > (T 2 + U)/2, then pN is convex. In view of the last theorem, it

suffices to show that p
1/(2N+m)
N (1, t, 0, . . . , 0) is convex at (1, 0, . . . , 0). Writing down

the relevant Taylor series, we have

(9) (1 + t2)N/(2N+m)(1 + αt+ βt2/2 + . . . )1/(N+2m)

where |α| ≤ T and |β| ≤ U . By expanding the product, a standard computation
shows that the second derivative is

(10)
2N

2N +m
+

1

2N +m
b− 2N +m− 1

(2N +m)2
a2 ≥ 1

2N +m

(
2N − U − T 2)

)
≥ 0.

There are may be errors of constants here, but the overall idea seems to work. In
Uniform denominators it was proved that there exists such an N so that pN is a sum
of squares, but actually the proof showed pN ∈ Qn,m+2N ⊂ Kn,m+2N and was much
less elementary.

8. If a > 0, then x2 +ay2 is convex, but if n ≥ 1 and (x2 + y2)r(x2 +ax2) ∈ K2,2r+2

for all a, then since the cone is closed, we would have x2(x2+y2)r being convex, which
violates #5. It is thus of vague computational interest to determine the interval Ir
so that (x2 + y2)r(x2 + ax2) ∈ K2,2r+2 ⇐⇒ a ∈ Ir. A straightforward and hopefully
correct computation shows that a ∈ Ir ⇐⇒ a+ 1/a ≤ 8r + 18 + 8/r. In particular,
for r = 1, (x2 + y2)(x2 + ay2) ∈ K4,4 ⇐⇒ 17− 12

√
2 ≤ a ≤ 17 + 12

√
2.

9. The work that has been done on Kn,m has actually been done on f 1/m. Sup-
pose X =< u1, . . . , un > is an n-dimensional vector space and a (non-homogeneous)
polynomial f(x2, . . . , xn) of degree m is used to define a proposed norm on X by

(11) ||u1 + x2u2 + · · ·xnun|| = f(x2, . . . xn)1/m

These came up in my 1976 PhD thesis; when m = 2, this sort of norm is familiar
from Hilbert space. It turns out that the triangle inequality is satisfied iff f 1/m

is convex. The relevant paper is Banach spaces with polynomial norms, Pacific J.
Math., 82 (1979), 223-235 (MR 83c.46007), and is now scanned on my webpage as
.../paper4.pdf .

Independently and somewhat earlier, V. I. Dmitriev started working on this subject
and wrote two papers: in 1973 and 1991. (There are at least two different V. I.
Dmitriev’s MathSciNet; this one is at Kursk State Technical University.) The earlier
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paper is: MR0467523 (57 #7379) Dmitriev, V. I. The structure of a cone in a five-
dimensional space. (Russian) Vorone. Gos. Univ. Trudy Naun.-Issled. Inst. Mat.
VGU Vyp. 7 (1973), 13–22. I have ordered this from the inter-library but not seen
it yet. The later paper is MR1179211 (93i:12003) Dmitriev, V. I. Extreme rays of
a cone of convex forms of the sixth degree in two variables . (Russian) Izv. Vyssh.
Uchebn. Zaved. Mat. 1991, , no. 10, 28–35; translation in Soviet Math. (Iz. VUZ)
35 (1991), no. 10, 25–31, which I have seen, both in English and in Russian. All my
information about the 1973 paper comes from the 1991 one. S. Krein had asked n
1969 for the extreme elements of Kn,m. (For m = 2, Pn,2 = Kn,2 = Qn,2 so there is
nothing to say.) In 1973, Dmitriev proved that Q2,4 = K2,4 and that Q2,4k ( K2,4k

for k > 1. In 1991, Dmitriev completed the result for K2,4k+2 and gave the extremal
elements of K2,6; see #14. Independently, in my thesis and the above paper, I found
these results, with x2k + x2y2k−2 + y2k ∈ K2,2k \ Q2,2k, along with an example in
K3,4 \Q3,4. Somewhat sadly, Dmitriev writes in 1991 “I am not aware of any articles
on this topic, except [his first one].”

It is worth emphasizing that since Pn,m = Σn,m if n = 2 or (n,m) = (3, 4), these
examples seem to be useless in finding a convex form which is not sos.

10. For references to the inner product, see the Memoir. We write

(12) xi = xi11 · · ·xinn , c(i) =
(i1 + · · ·+ in)!

i1! · · · in!

and write p ∈ Fn,d as

(13) p(x) =
∑
i

c(i)a(p; i)xi

so that the coefficients have multinomial coefficients attached. For α ∈ Rn, define
the form (α·)d by

(14) (α·)d(x) =

(∑
j

αjxj

)d

=
∑
i

c(i)αixi.

We define the classical (apolarity, Fischer, obvious) inner product by

(15) [p, q] =
∑
i

c(i)a(p; i)a(q; i).

We see that [p, (α·)d] = p(α), and this proves immediately that as closed convex
cones, Pn,m and Qn,m are duals. By definition, p ∈ Σ∗n,m iff [p, h2] ≥ 0 for all forms

h ∈ Fn,m/2. If we write such a form as
∑
t(j)xj, with monomials of degree m/2, then

a calculation shows that

(16) [p, h2] =
∑
j

∑
k

a(p; j + k)t(j)t(k),

and so p ∈ Fn,m/2 if and only if the above generalized Hankel quadratic form is psd.
This, as we all found out in Banff, is a spectrahedron.
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11. The inner product also has a differential interpretation. Let

(17) Di =

(
∂

∂x1

)i1
· · ·
(

∂

∂xn

)in
.

Then a routine calculation shows that q(D)p = d![p, q], and, as noted in the references,
if q = fg, where deg g = r, then

(18) d![p, q] = q(D)p = f(D)(g(D)p) = (d− r)![g(D)p, f ].

After changing letters for clarity, the Hessian for p at β in the α direction is

(19)

n∑
i=1

n∑
j=1

pij(β)αiαj =

(
α1

∂

∂x1

+ · · ·+ αn
∂

∂xn

)2

(p)(β)

= [(α ·D)2p, (β·)m−2] = m(m− 1)[(α·)2(β·)m−2, p].

In particular, it follows immediately that K∗n,m is the vector space spanned by the

set of forms {(α·)2(β·)m−2 : α, β ∈ Rn}. Note that elements of K∗n,m can have at

most two linear factors. For k ≥ 3,
∏k

j=1(x − jy)2 ∈ P2,2k \ K∗2,2k, and this gives a
nonconstructive proof that Q2,2k ( K2,2k. Since the extremal elements of P2,4 are
products of two linear squares, we get Q2,4 = K2,4 and since (x2 + y2 − z2)2 is not
a product of squares of linear factors, Q3,4 ( K3,4. Similar arguments show that
Qn,m ( Kn,m if m ≥ 4 unless (n,m) = (2, 4).

12. The Memoir introduced the blender, an extremely natural mathematical object.
A blender is a closed convex cone of forms in Fn,d which is also closed under all
invertible linear changes of variable. (Including, by continuity, non-invertible ones;
cf. orbitopes.) It is not hard to show that if W is a blender and there exist p, q ∈ W
and u, v ∈ Rn so that p(u) < 0 > q(v), then W = Fn,d. For an n × n matrix M ,
we let p ◦M be the form defined by (p ◦M)(x) = p(Mx). It is not hard to show
that [p ◦ M, q] = [p, q ◦ M t], and so the dual cone of a blender is also a blender.
Examples of blenders are all cones listed above. More generally, if mi are positive
even integers and di > 0 and

∑
midi = m, then the cone generated by products

fm1
1 · · · fmr

r , deg fi = di also defines a blender. (The only issue is that it is closed, and
this can be done similarly to the proof for Qn,m.) In the Memoir, Kn,m is denoted
Nn,m based on its origins in norms. One non-trivial blender is Wα ∈ F2,4 which is
generated by x4 − αx2y2 + y4 for 0 ≤ α ≤ 2. These are all the possible blenders of
binary quartics. By taking (x, y) 7→ (x+ y, x− y), x4 + 12+2α

2−α x
2y2 + y4 ∈ Wα (at least

for α < 2.) It can be shown, and will be written up elsewhere, that W ∗
α = Wβ, where

α2 + β2 = 4,
13. Suppose p ∈ F2,m. Let A(p)(x, y) denote the 2 × 2 Hessian; it will be a form

of degree 2m − 4. Equivalently, let f(t) = p(1, t). Then up to a constant multiple
of t1/m−2, (f 1/m)′′ is B(f)(t) := mf(t)f ′′(t) − (m − 1)f ′(t)2. This is nominally a
polynomial of degree 2m− 2, but it is easy to check that the coefficients of t2m−2 and
t2m−3 formally vanish and that this is the dehomogenization A(p)(1, t), again up to
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harmless multiple. We assume that p is not an m-th power of a linear form so it is
positive definite. Observe that

(20)

p(t) =
m∑
k=0

(
m

k

)
akt

k =⇒ p′(t) = m
m−1∑
k=0

(
m− 1

k

)
ak+1t

k

=⇒ p′′(t) = m(m− 1)
m−2∑
k=0

(
m− 2

k

)
ak+2t

k

=⇒ B(f)(t) = m2(m− 1)((a0a2 − a2
1) + (m− 2)(a0a3 − a1a2)t+ · · · .

It’s easy to argue that if A(p) is positive definite, or, equivalently, if B(f)(t) has full
degree and is positive, then p is not extremal in K2,m. To look at extremal elements,
we assume that one of these has a zero. If, say B(f)(0) = 0, then B(f)′(0) = 0 as
well, so a0a2 = a2

1 and a0a3 = a − 1a − 2. Since a0 > 0, we can write a1 = ra0,
from which it follows that a2 = r2a0 and a3 = r3a0. Under these substitutions, the
coefficient of t2 in B(f)(t) is m2(m − 1)

(
m−3

2

)
(a4 − a0r

4). In other words, zeros of
B(f) make f agree with an m-th power of a linear form for the first four terms of
the Taylor series, and it’s larger on the fifth term. When m = 4, this implies that
p(x, y) = a0(x+ ry)4 + cy4 with c ≥ 0, and this was (my original, at least) proof that
K2,4 = Q2,4.

14. In degree six, one can argue that if there is only one zero and if it has order
two, then the form is not extremal. Thus an extremal sextic either has a zero of order
four or more or two zeros. In the first case, a similar argument to above shows that
p(x, y) = a0(x + ry)6 + cy6 with c > 0. In the second case, we may make a change
of variables to put two zeros at (1, 0) and (0, 1) and, having done that, we may scale
them so that the coefficients of x6 and y6 are both 1. That is,

(21) p(x, y) = x6 + 6a1x
5y + 15a2x

4y2 + 20a3x
3y3 + 15a4x

2y4 + 6a5xy
5 + y6.

The two assumed zeros show that (a1, a2, a3) = (r, r2, r3), and not assuming anything
a priori, that (a5, a4, a3) = (s, s2, s3). The common value for a3 shows that r = s.
Let

(22) qr(x, y) = x6 + 6rx5y + 15r2x4y2 + 20r3x3y3 + 15r2x2y4 + 6rxy5 + y6.

A calculation shows that

(23)
A(qr)(x, y) = 900(1− r2)x2y2×

6r2(x4 + y4) + (4r + 20r3)(x3y + xy3) + (1 + 15r2 + 20r4)x2y2

Consideration of A(qr(1,±1)) and a little algebra show that this is psd if and only if
r = ±1 (and qr(x, y) = (x± y)6) or |r| ≤ 1/2. A little more work leads to a theorem
found independently by me (in 1979) and Dmitriev (in 1991):

THM The extremal elements in K2,6 are given by (ax+ by)6 and {qr, |r| ≤ 1/2}.
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Interestingly enough, qr(x+ y, x− y) is an even form:

(24)
2(1 + r)(1 + 5r + 10r2)x6 + 30(1− r2)(1 + 2r)x4y2

+30(1− r2)(1− 2r)x2y4 + 2(1− r)(1− 5r + 10r2)y6

The boundary example, is q−1/2(x + y, x− y) = x6 + 45x2y4 + 18y6, which scales to

x6 + 5(3/2)2/3x2y4 + 18y6. In this case, A(q±1/2) has an extra zero: A(q−1/2)(x, y)
is a positive multiple of x2(x − y)2y2(x2 − xy + y2), so the extremal elements, even
for Q2,6, have varying algebraic patterns. One expects that some of the extremal
elements of K2,2k will be hard to classify algebraically as k increases.

15. It is worth exploring the sections of P2,6 = Σ2,6, Q2,6 and K2,6 of forms of the
type gA,B(x, y) = x6 + 15Ax4y2 + 15Bx2y4 + y6. Pictures are in the Mathematica
appendix at the end.

(i) If gA,B is on the border of the P2,6 section then it clearly has a zero, and since
it’s psd, we can assume (x + ry)2 is a factor. By the evenness, (x − ry)2 must also
be a factor, and since the third factor is even, the coefficients of x6, y6 force it to
be x2 + 1

r4
y2. Thus, the border forms are (x2 − r2y2)2(x2 + 1

r4
y2), and the border is

parameterized by

(25) 15A =
1

r4
− 2r2, 15B = r4 − 2

r2

The curve is sketched in the appendix. Everything above it and to the right is in
P2,6.

(ii) If gA,B is in Q2,6 = Σ∗2,6, then its generalized Hankel matrix or catalecticant is
psd. This matrix is

(26)

∣∣∣∣∣∣∣∣
1 0 A 0
0 A 0 B
A 0 B 0
0 B 0 1

∣∣∣∣∣∣∣∣
This is psd iff A ≥ B2 and B ≥ A2, so the section is the familiar calculus region
between these two parabolas. This is sketched in the appendix.

(iii) It would be challenging in general to find this section for K2,6 except that we
know that all the extremal elements of K2,6 which are not purely sixth powers have
a representative in this section. We scale qr(x, y) so that the coefficients of x6 and
y6 are both 1 and discover that the parameterization of the boundary is ψ(r), ψ(−r),
where

(27) ψ(r) =
(1− r)2/3(1 + r)1/3(1 + 2r)

(1 + 5r + 10r2)2/3(1− 5r + 10r2)1/3

The intercepts occur when r = ±1
2

and, as noted earlier, represent x6+5(3
2
)2/3x2y4+y6

(or with (x, y) reversed) and so are at (18−1/3, 0) and (0, 18−1/3). The point (1, 1)
actually is smooth but of infinite curvature. The Taylor series of ψ(r) at r = 0
begins 1 + 16

3
r3 − 48r4, so locally, x − y = 32

3
r3 and x + y − 2 = −96r4, hence



CONES OF CONVEX FORMS 9

x+y−2 ≈ c(x−y)4/3 for some c < 0. The maximum value of ψ(r) can be computed:
5−5/3(1565 + 496

√
10)1/3 ≈ 1.000905. Astonishingly, this can be found in my 1979

paper on p.232, done without Mathematica!
16. Some other interesting extremal elements of K2,2k. In the 1979 paper, I asserted

that x2d + αx2ky2d−2k + y2d ∈ K2,2d if and only if 0 ≤ α ≤ α(d, k). It is more
illuminating to rescale and assume that p(x, y) = ax2d + bx2ky2d−2k + cy2d is in K2,2d

but A(p)(x, y) has a double zero at (1, 1). Under these conditions, it is not hard to
find that
(28)
p(x, y) = k(2k−1)2x2d+d(2d−1)(2k−1)(2d−2k−1)x2ky2d−2k+(d−k)(2d−2k−1)2y2d.

Of particular interest is when d = 2k, and the example simplifies to

(29) x4k + (8k − 2)x2ky2k + y2k.

In fact, α(d, k) grows at most linearly in d. Another interesting border example is

(30) x6k + (6k − 1)(6k − 3)x4ky2k + (6k − 1)(6k − 3)x2ky2k + y6k.

Finally, trying to put four zeros on A(p)(x, y) for octic p leads to

(31) (x2 + y2)4 +
8√
7
xy(x2 − y2)(x2 + y2)2.

I will do my best to make this coherent by the time these notes become a paper. It is
also true that x4 + y4 + z4 + 2x2y2 + 6x2z2 + 6y2z2 ∈ K3,4 \Q3,4. This was in my 1979
paper. My thesis proved the existence of such an element by a 20 page perturbation
argument that I am frankly afraid to look at now. I apologized to the committee
when I improved the argument in the paper.

17. Another blender I’ve worked on for a long time without reaching a complete
understanding is Ŵ := {

∑
k(akx

2 + bkxy + cky
2)4}, which could be thought of as a

projection of Q3,4, which we know about, under (x1, x2, x3) 7→ (x2, xy, y2). I guess
it’s a composition of Veronese’s. The best I can tell you is that gα(x, y) := x8 +

αx4y4 + y8 ∈ Ŵ if and only if α ≥ −14
9

. I have a more general conjecture. Suppose
p(x, y) ∈ F2,4k. As a special case of Becker’s theory of higher orders, we know that
p is a sum of fourth powers of rational functions if and only if it is psd and all zeros
occur to order a multiple of 4. (So for α > −2, gα is a sum of fourth powers with
denominators.) I have a conjecture (wrote “theorem” on the board, in a burst of
confidence):

CONJ: The form p(x, y) is a sum of 4th powers if and only if there are psd forms
f, g so that p = f 2 + g2.

This conjecture is true when deg p = 4 and for forms of the special kind x8 +
γx6y2 + αx4y4 + γx2y6 + y8. One direction is easy, since f 2 = (q2

1 + q2
2)2 can be

written as a sum of three fourth powers. See (with M.D. Choi, T.Y. Lam, and A.
Prestel) Sums of 2m-th powers of rational functions in one variable over real closed
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fields, Math. Z., 221 (1996), 93-112 (MR 96k:12003), which will be on the web by
Summer 2010.

18. Inspired by Greg Blekherman’s talk, let’s look at ternary sextics. Thanks to a
joint paper (with M. D. Choi and T. Y. Lam) Even symmetric sextics, Math. Z., 195
(1987), 559-580 (MR 88j.11019), on the web by Summer 2010, one can completely
say when an even ternary sextic is psd and sos. I will omit the details, and give two
candidates, both known to be psd, and the second is not sos.

(32)
M3

2 = (x2 + y2 + z2)3 = x6 + y6 + z6 + 3(x4y2 + · · · ) + 6x2y62z2;

R = x6 + y6 + z6 − (x4y2 + · · · ) + 3x2y2z2.

On the unit sphere, the average value of M3
2 is, well 1, with, well, maximum 1 and

minimum 1. By my (not contractual) computation, the average value of R is 2/7,
with maximum 1 and minimum 0, because it has zeros. Thus, if αM3

2 + βR is psd,
then α ≥ 0. Scale so that α = 1. Evaluation at (1,0,0) shows that M3

2 + βR psd
implies β ≥ −1 and M3

2 − R is evidently a sum of squares of monomials. Thus
M3

2 + βR is psd iff β ≥ −1. There is a theorem in this paper which gives necessary
and sufficient conditions to be sos; in this case, strangely enough, it’s β ∈ [−1, 48].
The big question now is when is it convex? Since the coefficient of x4y2 is 3 − β,
we must have β ≤ 3, and so it is impossible that such a form is convex and not sos.
My computations on the range on which M3

2 + βR is convex are not, shall we say,
converging at this writing. A very queasy upper limit for the interval is, improbably,
[−3

4
, 72

29
]. I told some people some other bounds during the conference. I was wrong.

19. Thanks to Greg Blekherman and John D’Angelo for helpful conversations and
to Peter Kuchment, a classmate of V. I. Dmitriev, for trying to get in touch with him
for me.
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