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Penalty Kick Game

How to take penalties: Freakonomics explains, S. J. Dubner and S. D. Levitt, Times Online, June 12, 2010
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Penalty Kick Game

L R
L 0, 0 1, -1

R 1, -1 0, 0

How to take penalties: Freakonomics explains, S. J. Dubner and S. D. Levitt, Times Online, June 12, 2010

How good are footballers at 
randomizing their penalty kicks?

Just Enough Education to Perform?  
Data from top French and Italian 
leagues show that “football players, 
most of whom are not renowned for  
their many years of formal education, 
are capable of doing the kind of mental 
calculations that garlanded scholars 
need long, complicated formulas to 
produce.’’
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3 strategies: L, C, R - One prediction 
failed to hold in the data: kicking to the 
center is most successful, but least 
chosen. 
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Penalty Kick Game

L R
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Finite random games

Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, J. E. Cohen, Proc. Natl. 
Acad. Sci. USA 1998
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Finite random games
Setpup: n players, player p has mp strategies.

Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, J. E. Cohen, Proc. Natl. 
Acad. Sci. USA 1998

Thursday, June 17, 2010



Finite random games
Setpup: n players, player p has mp strategies.

Payoffs: for each player, there is a payoff matrix, each entry 
is i.i.d. continuous random variable, eg. U(0,1).  

Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, J. E. Cohen, Proc. Natl. 
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Finite random games
Setpup: n players, player p has mp strategies.

Payoffs: for each player, there is a payoff matrix, each entry 
is i.i.d. continuous random variable, eg. U(0,1).  

Self-interest: Nash Equilibrium Profile (NE) is one in which 
each player’s strategy is best response to other players’ 
strategies.

Cooperation arises: when NE is Pareto dominated by 
another strategic profile in which every player fares at least 
as well, and some fares better.

Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, J. E. Cohen, Proc. Natl. 
Acad. Sci. USA 1998
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Finding Nash equilibria
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Finding Nash equilibria

1928 - John von Neumann: any two-person zero-sum game has an 
equilibrium, a min-max pair of randomized strategies.
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Finding Nash equilibria

1928 - John von Neumann: any two-person zero-sum game has an 
equilibrium, a min-max pair of randomized strategies.

1951 - John Nash: every game has an equilibrium in mixed strategies.  
The proof relies on Brouwer’s fixed point theorem, highly non-
constructive.
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Finding Nash equilibria

1928 - John von Neumann: any two-person zero-sum game has an 
equilibrium, a min-max pair of randomized strategies.

1951 - John Nash: every game has an equilibrium in mixed strategies.  
The proof relies on Brouwer’s fixed point theorem, highly non-
constructive.

Finding NE is NP hard...,  

but finding PNE is easy.
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Probability distribution of  k, the number of PNEs:

Probability that a PNE is PPO is given by                                                                   

If all mp=m, the probability that a PNE is PPO is not monotonic in n,  the number of 
players.  However, the probability that a PNE is PPO decreases as mp increases.

For fixed n, the probability that a PNE is PPO is bounded from below by 1/e  when all 
mp tends to infinity.

If all players have the same number of strategies, as n tends to infinity, a PNE is always 
PPO.

Finite random games

Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, J. E. Cohen, Proc. Natl. 
Acad. Sci. USA 1998
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(A,B): a random two-person m-strategy game

A,B are                     payoff matrices, one for each player.  The m2 payoff entries aij and bij are i.i.d. 
(real-valued, independent, identically distributed continuous random variables), we shall 
assume them to be U(0,1) for this talk.

The pure strategy pair                 is a PNE if 

In symmetric random games,   

In zero-sum games 

In common payoffs games, 

2-person m-strategy 
random games

m×m

(i∗, j∗)

aij = bji

aij = −bij

aij = bij

ai∗,j∗ = max
i

ai,j∗ , bi∗,j∗ = max
j

bi∗,j
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Trust Game: PNE (3,3) is Pareto-Dominated by (1,1), (4,4), (1,2),
(2,4), (1,4) 

Ultimatum Game: PNEs (1,1) and (3,3) are PPO

2-person 2-strategy 
two-role games

f1 f2
e1 (β − c, rc− β) (−c, rc)
e2 (0, 0) (0, 0)

G1 G2 G3 G4

G1 (r − 1)c β − c −c (r − 1)c− β
G2 rc− β 0 0 rc− β
G3 rc 0 0 rc
G4 (r − 1)c+ β β − c −c (r − 1)c

G1 = e1f1, G2 = e2f1, G3 = e2f2, G4 = e1f2

f1 f2
e1 (1− h, h) (1− h, h)
e2 (0, 0) (1− l, l)

G1 G2 G3 G4

G1 1 1− h 1− h 1
G2 h 0 1− l 1 + h− l
G3 h l 1 1 + h− l
G4 1 1− h+ l 1− h+ l 1

Public good games with incentives:  the role of reputation.  H. De Silva and K. Sigmund, in Games, Groups, and the Global
good, S. A. Levin (ed.), Springer Series in Game Theory,  2009

c < β < rc

0 < l < h < 1
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2-person m-strategy 
two-role games

    

Consider a game with two roles I and II and m strategies for each role.  Let aij  and bij  be the 
respective payoffs to role I and II players when the role I player uses strategy i and the role II 
player uses strategy j.  A and B are mxm payoff matrices whose entries are independent             
U(0,1) distribution.  A coin toss decides which role to assign to each player.  The resulting 
game is a 2-person m2 -strategy symmetric game whose m2-xm2  payoff matrix C has entries 
given by 

The strategic profile (i*j*, k*l*) is PNE if  

cij,kl = ail + bkj

ai∗l∗ + bk∗j∗ = max(i,j)ail∗ + bk∗j , ai∗l∗ + bk∗j∗ = max(k,l)ai∗l + bkj∗
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Some main questions
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Some main questions

How often is there a PNE?   What is the probability distribution of the 
number of PNEs?
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Some main questions

How often is there a PNE?   What is the probability distribution of the 
number of PNEs?

How often is a PNE not PPO? i.e. how often can cooperation lead to 
improvement for all players involved.
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random game

symmetric random game

zero-sum game

common payoffs game

two-role game

Probability distribution of 
the number of PNES
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How often does PNE exist?
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random game:

symmetric random game: 

zero-sum game:

common payoffs game:

two-role game

Asymptotic behavior of
number of PNEs for large m

P (k,m) → e−1

k!

P (0,m) → 1, P (1,m) → 0

P (k,m) → e−1.5
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random game:                               1

symmetric random game: 

zero-sum game:

common random game:

two-role game

Expected  the number of PNES
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Expected  the number of PNES
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random game

symmetric random game                                                                                                     

zero-sum game

common random game

Π =
� 1
0

� 1
0 m2xm−1ym−1(1− (1− x)(1− y))(m−1)2dydx

Π = m
2m−1 (Jm + m−1

m Km)

Jm =
� 1
0 mx2(m−1)(1− (1− x)2)(m−2)(m−1)/2dx

Km = 2
� 1
0

� x
0 m2x2m−3ym−1(x2 + 2(1− x)y)(m−2)(m−3)/2dydx

How often is a  PNE   PPO?

Π = 1

Π = 2m−1
m2
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How often is a  PNE PPO?
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How often is a  PNE 
 PPO in a two-person game?
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How often is a  PNE 
 PPO in a two-person game?

Probability that a PNE is PPO is independent of distribution.
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How often is a  PNE 
 PPO in a two-person game?

Probability that a PNE is PPO is independent of distribution.

As m, the number of strategies increases, cooperation becomes more 
favorable.
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How often is a  PNE 
 PPO in a two-person game?

Probability that a PNE is PPO is independent of distribution.

As m, the number of strategies increases, cooperation becomes more 
favorable.

As the correlation between payoffs increases, cooperation becomes 
more desirable.
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2 strategies A and B,  with payoff values

i* is PNE if  

Probability distribution of k, the number of PNEs.

n-person 2-strategy 
symmetric random games

�α = (α1, · · · ,αn), �β = (β0,β1, · · · ,βn−1)

αi > βi−1, βi > αi+1

P (k, n) =
1

2n

�
n+ 1
2k − 1

�
, E(X) =

n+ 3

4
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PNE 0* or n* are PPO with probability

PNE 1* or (n-1)* are PPO with probability

PNE 2*, 3*,..., (n-2)* are PPO with probability

n-person 2-strategy 
symmetric random games
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n-person 2-strategy 
symmetric random games
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Probability that a PNE is PPO in n person 2 strategy game

asymmetric case: Π(2,2)> Π(2,2,2)< Π(2,2,2,2)< Π(2,2,2,2,2)< Π(2,2,2,2,2,2)
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To be continued...

Expected gain from cooperation.

Evolution of cooperation in repeated finite random games.
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