

























| NMPC – Can we avoid on-line optimization?                                                                                                                                                                                                                                                                            |    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| Divide Dynamic Optimization Problem:                                                                                                                                                                                                                                                                                 |    |  |  |  |
| <ul> <li>preparation, feedback response and transition stages (Bock, Diehl et al.,<br/>1998-2006)</li> </ul>                                                                                                                                                                                                         |    |  |  |  |
| <ul> <li>solve complete NLP in background ('between' sampling times)</li> </ul>                                                                                                                                                                                                                                      |    |  |  |  |
| as part of preparation and transition stages                                                                                                                                                                                                                                                                         |    |  |  |  |
| <ul> <li>solve <u>perturbed problem</u> on-line</li> </ul>                                                                                                                                                                                                                                                           |    |  |  |  |
| <ul> <li>&gt; two orders of magnitude reduction in on-line computation</li> </ul>                                                                                                                                                                                                                                    |    |  |  |  |
| <ul> <li>Based on NLP sensitivity of z<sub>0</sub> for dynamic systems</li> <li>Extended to Collocation approach – Zavala et al. (2008, 2009)</li> <li>Similar approach for MH State and Parameter Estimation – Zavala et al. (2008)</li> </ul>                                                                      |    |  |  |  |
| Stability Properties (Zavala, B., 2009)                                                                                                                                                                                                                                                                              |    |  |  |  |
| <ul> <li>Nominal stability – no disturbances nor model mismatch <ul> <li>Lyapunov-based analysis for NMPC</li> </ul> </li> <li>Robust stability – some degree of mismatch <ul> <li>Input to State Stability (ISS) from Magni et al. (2005)</li> </ul> </li> <li>Extension to economic objective functions</li> </ul> |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                      | 14 |  |  |  |































| Combining MHE & NMPC<br>(Huang, Patwardhan, B., 2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Offset-free Formulation <ul> <li>Apply MHE results as state and output corrections for NMPC problem</li> <li>Modify with an advanced step approach → <u>as-MHE</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\min  \sum_{j=1}^{N_e} (\zeta_{k-N_e+j}^T \Pi_y \zeta_{k-N_e+j}) + \hat{\theta}_k^T \Pi_\theta \hat{\theta}_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{aligned} &+ (\hat{x}_{k-N_e} - \bar{x}_{k-N_e})^T \Pi_0(\hat{x}_{k-N_e} - \bar{x}_{k-N_e}) \\ \text{s.t.}  \hat{x}_{k-N_e+j+1} = f(\hat{x}_{k-N_e+j}, u_{k-N_e+j}, \hat{\theta}_k) \\ &\qquad \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{aligned} \zeta_{k-N_e+j} &= y_{k-N_e+j} - \hat{y}_{k-N_e+j} \\ \hat{x}_{k-N_e+j} &\in \mathbb{X}, \zeta_{k-N_e+j} \in \Omega_{\zeta}, \hat{\theta}_k \in \Omega_{\theta} \\ j &= 0, \dots, N_e - 1. \end{aligned} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\lim_{j \to 0} \sum_{j=0}^{k-1} (t_{k+j} - y_r) + \sum_{i=0}^{k-1} (t_{k+i} - y_{k+i}) + \sum_{i=0}^{k-1} (t_{k+i}$ |
| $z_{k} = \hat{x}_{k},  z_{k+j} \in \mathbb{X} $ $l_{k+j} = h(z_{k+j}) + \zeta_{k},  \triangle v_{k+i} = v_{k+i+1} - v_{k+i} $ $v_{k+j} = v_{k+i} \text{ for } i \leq j < i+1,  v_{k+i} \in \mathbb{U},  N_{c} \leq N_{p}. $ $(10b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (10d<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |











| Chemical                                                                             | Conclusions                                                                                                    |    |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----|
| Dynamic optimi<br>Batch processes<br>Polymer process<br>Periodic adsorpt             | ization essential for many processes<br>s<br>ses (especially grade transitions)<br>tion processes              |    |
| Chemical Proce<br>Need for First-F<br>Extension to Or                                | ess Operations: RTO → D-RTO<br><sup>p</sup> rinciples <u>Dynamic</u> Models<br>n-Line Economic Decision-Making |    |
| NMPC and MH<br>Full-Discretizati                                                     | E Computational Strategies<br>ion + Fast Sensitivity Calculations                                              |    |
| Large Scale Mo<br>ASU process w<br>Advantages ov<br>Extended to Ur<br>Direct Dynamic | odels<br>vith DAE model<br>rer linear MPC<br>ncertainties – NMPC + MHE Formulations<br>c Optimization          |    |
|                                                                                      |                                                                                                                | 36 |

