The National Centre of Science, Information and Communication Technology, and Mathematics Education for Rural and Regional Australia

Variation in Student Performance on the Mathematical Literacy Scale: PISA 2000

Country	Mean		
	Score	S.E.	
Japan	557	(5.5)	
Korea	547	(2.8)	
New Zealand	537	(3.1)	
Finland	536	(2.2)	
Canada	533	(1.4)	
Australia	533	(3.5)	
United Kingdom	529	(2.5)	
Switzerland	529	(4.4)	
Belgium	520	(3.9)	
France	517	(2.7)	
Austria	515	(2.5)	
Iceland	514	(2.3)	
Denmark	514	(2.4)	
Sweden	510	(2.5)	
Liechtenstein	514	(7.0)	

Ireland	503	(2.7)
OECD average	500	(0.7)
Norway	499	(2.8)
Czech Republic	498	(2.8)
Germany	490	(2.5)
United States	493	(7.6)
Spain	476	(3.1)
Russian Federation	478	(5.5)
Poland	470	(5.5)
Latvia	463	(4.5)
Italy	457	(2.9)
Portugal	454	(4.1)
Hungary	448	(4.0)
Luxembourg	446	(2.0)
Greece	447	(5.6)
Mexico	387	(3.4)
Brazil	334	(3.7)

Variation in Student Performance on the Mathematical Literacy Scale: PISA 2000

Country	N	Iean		Ireland	503	(2.7)
	Score	S.E.		OECD average	500	(0.7)
Japan	557	(5.5)	- 557 Capital Centre	Norway	499	(2.8)
Korea	547	(2.8)	-	Czech Republic	498	(2.8)
New Zealand	537	(3.1)		Germany	490	(2.5)
Finland	536	(2.2)	- 535 Capital	United States	493	(7.6)
Canada	533	(1.4)	Elsewhere	Spain	476	(7.0)
Australia	533	(3.5)		Russian Federation	/78	(5.1)
United Kingdom	529	(2.5)		Poland	470	(5.5)
Switzerland	529	(4.4)		Latvia	463	(4.5)
Belgium	520	(3.9)	- 528 Large Provincial - 526 Town	Italy	457	(2.9)
France	517	(2.7)		Portugal	454	(4.1)
Austria	515	(2.5)	- 516 Small Town	Hungary	448	(4.0)
Iceland	514	(2.3)		Luxembourg	446	(2.0)
Denmark	514	(2.4)	-	Greece	447	(5.6)
Sweden	510	(2.5)	- 513 Village	Mexico	387	(3.4)
Liechtenstein	514	(7.0)		Brazil	334	(3.7)

Mean Performance in 2006 PISA Mathematics

Country	Mear	n Score	
Chinese Taipei	549	(4.1)	
Finland	548	(2.3)	
Hong Kong- China	547	(2.7)	
Korea	547	(3.8)	
Netherlands	531	(2.6)	- 533 Capital (
Switzerland	530	(3.2)	- 530 Large Pro
Canada	527	(2.0)	
Macao-China	525	(1.3)	
Liechtenstein	525	(4.2)	
Japan	523	(3.3)	
New Zealand	522	(2.4)	
Belgium	520	(3.0)	
Australia	520	(2.2)	
Estonia	515	(2.7)	
Denmark	513	(2.6)	
Czech Republic	510	(3.6)	
Iceland	506	(1.8)	- 506 Town
Austria	505	(3.7)	1

	Slovenia	504	(1.0)	
	Germany	504	(3.9)	
	Ireland	501	(2.8)	- 497 Small Tov
	France	496	(3.2)	
	United Kingdom	495	(2.1)	
Centre	Poland	495	(2.4)	
	Slovak Republic	492	(2.8)	- 492 Village
ovincial	Hungary	491	(2.9)	
	Luxembourg	490	(1.1)	
	Norway	490	(2.6)	
	Lithuania	486	(2.9)	
	Latvia	486	(3.0)	
	Spain	480	(2.3)	
	Azerbaijan	476	(2.3)	
	Russian Federation	476	(3.9)	
	United States	474	(4.0)	
	Croatia	467	(2.4)	
	Portugal	466	(3.1)	
	Italy	462	(2.3)	

	Greece	459	(3.0)
	Israel	442	(4.3)
wn	Serbia	435	(3.5)
	Uruguay	427	(2.6)
	Turkey	424	(4.9)
	Thailand	417	(2.3)
	Romania	415	(4.2)
	Bulgaria	413	(6.1)
	Chile	411	(4.6)
	Mexico	406	(2.9)
	Montenegro	399	(1.4)
	Indonesia	391	(5.6)
	Jordan	384	(3.3)
	Argentina	381	(6.2)
	Colombia	370	(3.8)
	Brazil	370	(2.9)
	Tunisia	365	(4.0)
	Qatar	318	(1.0)
	Kyrgyzstan	311	(3.4)

Mean Performance in 2006 PISA Science

Country	Mean		
	Score	S.E.	
Finland	563	(2.0)	
Hong Kong- China	542	(2.5)	
Canada	534	(2.0)	
Chinese Taipei	532	(3.6)	
Estonia	531	(2.5)	
Japan	531	(3.4)	
New Zealand	530	(2.7)	
Australia	527	(2.3)	
Netherlands	525	(2.7)	
Liechtenstein	522	(4.1)	
Korea	522	(3.4)	
Slovenia	519	(1.1)	
Germany	516	(3.8)	
United Kingdom	515	(2.3)	
Czech Republic	513	(3.5)	
Switzerland	512	(3.2)	
Macao-China	511	(1.1)	
Austria	511	(3.9)	
Belgium	510	(2.5)	

	Ireland	508	(3.2)	
	Hungary	504	(2.7)	- 507 Small Tov
	Sweden	503	(2.4)	502 Villago
- 536 Capital Centre	Poland	498	(2.3)	- 502 v mage
- 536 Large Provincial	Denmark	496	(3.1)	
	France	495	(3.4)	
	Croatia	493	(2.4)	
	Iceland	491	(1.6)	
	Latvia	490	(3.0)	
	United States	489	(4.2)	
	Slovak Republic	488	(2.6)	
	Spain	488	(2.6)	
	Lithuania	488	(2.8)	
- 518 Town	Norway	487	(3.1)	
510 1000	Luxembourg	486	(1.1)	
	Russian Federation	479	(3.7)	
	Italy	475	(2.0)	
	Portugal	474	(3.0)	
	Greece	473	(3.2)	

	Israel	454	(3.7)
vr	Chile	438	(4.3)
	Serbia	436	(3.0)
	Bulgaria	434	(6.1)
	Uruguay	428	(2.7)
	Turkey	424	(3.8)
	Jordan	422	(2.8)
	Thailand	421	(2.1)
	Romania	418	(4.2)
	Montenegro	412	(1.1)
	Mexico	410	(2.7)
	Indonesia	393	(5.7)
	Argentina	391	(6.1)
	Brazil	390	2.8)
	Colombia	388	(3.4)
	Tunisia	386	(3.0)
	Azerbaijan	382	(2.8)
	Qatar	349	(0.9)
	Kyrgyzstan	322	(2.9)

SiMERR Vision

SiMERR Australia works with rural and regional communities to achieve improved educational outcomes for all students in the areas of Science, ICT and Mathematics, so that:

- Parents can send their children to rural or regional schools knowing they will experience equal opportunities for a quality education;
- Students can attend rural or regional schools realising their academic potential in Science, ICT and Mathematics; and
- Teachers can work in rural or regional schools and be professionally connected and supported

SiMERR is a National Platform to address rural and other important school-education issues.

SiMERR targets two specific areas of research and teacher professional learning. SiMERR programs identify and address important educational issues of:

- i. specific concern to education in rural and regional Australia, and
- national concern to education across Australia but ensuring rural and regional voices are represented.

Identifying and analysing processes in NSW public schooling producing outstanding educational outcomes to assist national renewal in junior secondary school education

Exceptional Outcomes In Mathematics Education

John Pegg Trevor Lynch Debra Panizzon Exceptional Outcomes in Science Education Exceptional Student Welfare Programs

Lorraine Graham Robert Stevens

AESOP

An Exceptional Schooling Out

Exceptional Educational Equity Programs

Lorraine Graham David Paterson Bobert Stevens

AESOP

Exceptional Outcomes in English Education

Wayne Sawyer Paul Brock David Baxter Leadership for Exceptional Educational Outcomes

Exceptional Outcomes in ESL / Literacy Education

Wayne Sawye David Baxter Paul Brock

A Project to Validate Draft National Professional Teaching Standards for Every State and Territory in Australia

for the Australian Institute for Teaching and School Leadership

Focus on two different studies

ITAM Improving Teaching Approaches to Mathematics

The philosophy of ITAM is one of facilitators assisting professionals in awareness raising and in identifying issues for themselves which relate to the unique situation and context of their own school.

QuickSmart

A second-chance program for students aged 10 to 14 years who are at or below National Benchmarks in school Mathematics, i.e., the bottom 30% of the achievement spectrum. From 2 schools in 2001 now adopted by over 5% of Australian schools.

Some Background Ideas I Carry Into Professional Learning Projects

These have to do with:

What is meant by success? Broad teacher characteristics? What about the brain and learning – Neuroscience perspective (Neural pathways) – Cognition perspective (Information processing)? General ideas about change/growth Participants' roles (teachers and facilitators) – leading formative and summative evaluations

The focus of these two projects is on the provision of professional learning in two different ways. These programs may be considered at two ends of a spectrum: School leading and Tertiary Institution leading.

There is teacher learning and facilitator learning in both.

What counts as success for both partners?

- Against what criteria can success by judged?
- Is enjoying ourselves or working hard or having a full program, enough?

Is our personal growth enough?

Criterion applied for both programs is:

"Any in-service activity which does not improve, modify or update actual practice at the point of delivery has not been successful. The only criterion against which efficacy of in-service provision can be judged is one of improving classroom practice"

Mike King, 1988. Open University Press

Significantly this means

- (a) In the classroom, i.e., child related practice.
- (b) In the nature of courses offered, i.e., improving curriculum interpretation, materials and delivery.

A teacher perspective

Doyle and Ponder (1977) provide three images of the teacher that they found in the innovation and change literature:

- 1. the rational adopter;
- 2. the stone-age obstructionist; and
- 3. the pragmatic sceptic.

Doyle and Ponder have argued that although most of the literature assumed that teachers are rational adopters, in fact most teachers are pragmatic sceptics.

According to Doyle and Ponder (1977) in reacting to change proposals pragmatic sceptics are swayed by the "practicality ethic".

This means taking into account :

1. whether it works, or whether it is congruent with their existing perceptions and practice, and

its cost in time, energy, stress and disruption versus any personal satisfaction or public recognition to be gained
 from the change.

A Neuroscience Perspective

Consider the difficulty in bringing about sustained change in teaching practice:

Let us reflect on neural pathways:

- 1. for humans in general, and
- 2. for teachers in particular as in presenting lessons and also about change in practice

In terms of the work of Professor John Hattie (personal communication) an average effect size for a cohort over a year is expected to be about 0.3. He states that effect sizes in the range

0 – 0.2 are not worth pursuing unless some cumulative effect can be considered

0.2 - 0.4 are interesting and worth pursuing

0.4 – 0.6 something important is happening

0.6 – 0.8 this is showing some major/ significant improvements

0.8 – 1.00 too much to expect and probably there are other intervening factors responsible for the grow

A Cognition Perspective

A Fundamental Learning Cycle (Pegg &Tall in Sriraman & English: Theories of Mathematics Education : Seeking New Frontiers)

Unistructural responses A or B or C or D Multistructural responses A and B and C and D (or a subset) Relational responses A B C D or A C B D or B D A C or..

- This three-level cycle reoccurs over and over again.
- The key point is that it takes the brain considerable time to achieve a relational response in any particular cycle.

How are these levels determined for a particular task?

- 1. General cognitive abilities
- 2. Familiarity of the content
- 3. Presentation of the task
- 4. Degree of interest or motivation
- 5. Amount of relevant information that can be retained simultaneously for this task
- 6. Amount of information processing required for solution

5&6 Lead to the notion of *Working Memory* (WM)

Working Memory (WM)

WM is usually defined as the ability to hold information in the mind while transforming it, or other information.

WM is used to organise, contrast, compare, or work on information.

WM is limited in capacity and duration. As we become more expert in a task, our WM does not increase but becomes more efficient.

A person can only process 2 or 3 items of information simultaneously as apposed to merely holding about 7 bits of information at a time.

Implications for learning 1

- Human intelligence comes from stored knowledge, not long chains of reasoning in WM
- Skilled performance consists of building increasing numbers of increasingly complex schemas by combining elements consisting of low level schemas into high level schemas
- A schema can hold a huge amount of information as a simple unit in working memory
- Higher-order processing occurs when there is 'sufficient space' in working memory so that appropriate schemas can be accessed from long-term memory and worked upon.

Professional Learning is a Partnership

Learning is taking place for all parties involved

However, the form of learning is usually different

Important - two issues are taking place for both the Teacher and the Professional Learning facilitators

The innovation itself

This should : (I) be formative and ongoing

(ii) occur at regular intervals or critical points; and

(iii) inform ongoing future action.

The processes of change

These should: (i) be summative;

(ii) occur at the end of the process; and,

(iii) consider how effective participants have been as a "change agent".e.g., How have I done? How could I do it more effectively? What have I learnt?

[Collect data throughout the process but analyse it at the end.]

Important not confuse the two. They serve different purposes.

ABOUT CHANGE

- Training has been replaced by development/learning.
 more than semantics, implies a move away from filling up deficiencies towards lifelong learning.
- Change is seen as a process rather than an event.
- Need to consider the complexity of the change process e.g., it is long-term not a single event
- The process has a strong social character but can be considered to be a very personal experience.
- Change can also be superficial
 - look good, hence, the importance of evidence

ABOUT CHANGE

- Change may mean different things to teachers at different career points.
- We need to look more closely not at the provision of teacher growth but the process of teacher growth.
- Direction of Change
 - External: top-down, covering deficiencies, bringing in new ideas
 - Internal: bottom-up (collaborative), builds on strengths

Need to be careful – External, top-down, can be a positive experience.

OTHER POINTS TO CONSIDER

- By starting a process it implies some change will occur.
- All change can be threatening.
- Need for change implies things are not working as well as they could.
- Need for great care and sensitivity in the way the change process is addressed.
- Needs to be an appropriate climate to bring about change.

About ITAM

ITAM builds upon, and extends, the skills and knowledge base of participants by addressing and solving an important practical problem identified by the staff and addressed over an extended period of time.

The facilitators' role is one of acting as catalysts for innovative actions and providing the necessary knowledge about, and impetus for, change.

Importantly, the model gives the staff ownership of the issue being investigated, the solution, and the type of support required.

PARTICIPATION IN A DECISION MAKING PROCESS CARRIES WITH IT A COMMITMENT TO THE DECISION

Involvement

Participation

Joint Ownership

Commitment to a Solution.

Fast and Accurate Basic Skills

Assisting students to undertake higher-order mental processing by improving their information retrieval times

- We work with school learning communities of 10 to 15 schools; 3 lots of 2 days in Year 1, 3 lots of 1 day in Year 2 and 2 days in Year 3
- Principals attend a one-day professional learning session each year. They can bring senior staff as well.
- The Principal or senior executive chair a School QS committee
- The school QS instruction team consists of a teacher coordinator and instructors who maybe teacher assistants (para-professionals)

quicksmart Implementation 2

- Students are involved in pairs in three 30-minute lessons a week
- Students are tested prior to intervention and at the end of the 30 week program on independent tests
- National testing data used to judge growth over time
- Comparison students are used to interpret growth in an individual school
- Teachers present progress reports to learning community of schools at the second and third workshops
- Qualitative data collected at end of project from students, parents, staff, etc

What structures produce best QS results

- 1. Embedding instruction in a supportive and well organised learning structure within a school
- 2. The 'right' classroom instruction addressing the students real level
- Having a community of schools experiencing both similar and different successes and sharing these
- Having senior management understand and commit to the program and acknowledge the successes
- 5. Having endorsement and support from a State/Territory-wide perspective

It is the full Nested Learning System for a thinking curriculum proposed by Lauren Resnick (2009)

quicksmart Overall achievements

Substantive evidence exists that:

In 30 weeks QS students grow 2-4 years compared to growth of average-achievers on independent, standardised or national/state tests and up to a factor of 8 on their previous growth

QS students maintain and extend gains on these tests 2, 3 and 5 years after the intervention

QS is successful with Indigenous and non-Indigenous students

QS is transformational for students in their education by improving student attendance rates, and attitudes to class improving.

What **Positive** Features Practising Teachers Report About Inservice (1)

- Working with practising teachers
- Collegiality
- Getting to know more teachers
- Sharing ideas and strategies
- Keeping in touch with new ideas
- Innovative ideas

What **Positive** Features Practising Teachers Report About Inservice (2)

- Learning about research
- Testing research findings
- Finding out about resources
- Getting a product that is useable
- Handouts for easy use

What Positive Features Practising Teachers Report About Inservice (3)

- Taking 'goodies' home with you
- Chance to experiment with new ideas
- Can spark new enthusiasm
- Increase in feeling of competence
- Participants have a clearly defined role

What Positive Features Practising Teachers Report About Inservice (4)

- Participants having a say
- A high level of activity
- Time out from school
- Break from routine

