This talk is an advertisement for....

* 1005.1949 (me)
* 1009.1655 (me and B.Rhoades)

Part I: Ish

The Affine Symmetric Group \mathfrak{S}_n

- Bijections: $\pi : \mathbb{Z} \to \mathbb{Z}$
- Periodic: $\forall k \in \mathbb{Z}, \ \pi(k+n) = \pi(k) + n$
- Frame of Reference: $\pi(1) + \cdots + \pi(n) = \binom{n+1}{2}$

zΒ

The "window notation": $\pi = [0, 2, 4]$

Observe: $[0,2,4] = \cdots (-3,-2)(0,1)(3,4)(6,7) \cdots$

The Affine Symmetric Group $\tilde{\mathfrak{S}}_n$

Define Affine Transpositions

$$((i,j)) := \prod_{k \in \mathbb{Z}} (i + kn, j + kn)$$

Then

$$\tilde{\mathfrak{S}}_n = \left\langle ((1,2)), ((2,3)), \dots, ((n,n+1)) \right\rangle$$

"affine adjacent transpositions"

The Affine Symmetric Group $\widetilde{\mathfrak{S}}_n$

(Lusztig, 1983) says it's a Weyl group.

"transposition"		"reflection in"
((1,2))	\rightarrow	$x_1 - x_2 = 0$
((2,3))	\rightarrow	$x_2 - x_3 = 0$
	÷	
$\left((n-1,n) ight)$	\rightarrow	$x_{n-1} - x_n = 0$
((n, n+1))	\rightarrow	$x_1 - x_n = 1$

Abuse of Notation

$$\mathfrak{S}_n = \left\langle ((1,2)), ((2,3)), \dots, ((n-1,n)) \right\rangle$$

"finite symmetric group"

Here's the first picture (of $\tilde{\mathfrak{S}}_3$) of the talk.

There are two ways to think.

1.
$$\tilde{\mathfrak{S}}_n = \mathfrak{S}_n \times \mathfrak{S}^n$$

- = (finite symmetric group) X (minimal coset reps)
- (Which cone are you in?) X (Where in the cone?)
- (permute the window notation) X (into increasing order)

zΒ

$$[6, -3, 8, -1] = [3, 1, 4, 2] \times [-3, -1, 6, 8]$$

Way 1 to think of $\tilde{\mathfrak{S}}_3$

What happens if we invert everything?

Invert!

.

Invert! This is way 2 to think.

Invert! This is way 2 to think.

2.
$$\tilde{\mathfrak{S}}_n = \mathfrak{S}_n \ltimes Q$$

~

semi-direct product with the root lattice

$$Q = \{(r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}$$

In terms of window notation:

$$[6, -3, 8, -1] = (2, 1, 4, 3) + 4 \cdot (1, -1, 1, -1)$$

"finite permutation + *n* times a root"

A root in each hexagon.

bijection: $Q \leftrightarrow \mathfrak{S}^n$

Today: a NEW statistic on the root lattice.

Today: a NEW statistic on the root lattice.

"It spirals!"

Call it "**ish**".

The definition:

Given
$$\mathbf{r}=(r_1,r_2,\ldots,r_n)\in Q$$

Let j be maximal such that r_j is minimal.

Then:
$$\mathsf{ish}(\mathbf{r}) := j - n(r_j + 1)$$

zB $ish(2, -2, 2, -2, 0) = 4 - 5 \cdot (-2 + 1) = 9$ n = 5 j = 4 $r_j = -2$

Part II: Shi

Start with a special simplex *D*.

Start with a special simplex *D*.

bounded by:

$x_1 - x_2$	=	-1
$x_2 - x_3$	=	-1
	÷	
$x_{n-1} - x_n$	=	-1
$x_1 - x_n$	=	2

Start with a special simplex *D*.

Note: *D* contains $(n+1)^{n-1}$ alcoves.

Next consider the "Shi hyperplanes".

And their "distance enumerator".

Call it "**shi**".

Behold! shi and ish together.

Generating Function: $Shi(n; q, t) = \sum q^{shi}t^{ish}$

Generating Function: $Shi(n; q, t) = \sum q^{shi}t^{ish}$

Shi(3; q, t) = $\frac{q \setminus t \mid 0 \quad 1 \quad 2 \quad 3}{0 \quad 1 \quad 2 \quad 2 \quad 1}$ $\frac{1 \quad 2 \quad 3 \quad 1}{2 \quad 2 \quad 1}$ $\frac{2 \quad 2 \quad 1}{3 \quad 1}$ zB

Conjectures:

- Symmetric in q and t.
- Equal to the Hilbert series of diagonal harmonics.

Theorem (me, 2009)

 \exists (at least) two natural maps to parking functions.

\Rightarrow Various fun corollaries!

Part III: Nabla

A family of simplices.

Given: p coprime to n with quotient and remainder.

$$p = qn + r$$

Let $D^p(n)$ be the simplex bounded by

$$\{x_i - x_j = q : i - j = r\}$$

$$\bigcup \{x_i - x_j = q + 1 : i - j = r - n\}$$

$$^{\mathsf{zB:}} \quad D = D^{n+1}(n)$$

Observe: $D^1(3)$

Observe: $D^4(3)$

16 alcoves

Theorem (Sommers, 2005)

 $D^p(n) \approx pA_\circ$

"a dilation of the fundamental alcove"

Hence
$$D^p(n)$$
 contains p^{n-1} alcoves.
"parking functions?"

Q: Can I extend **shi** and **ish** to $D^p(n)$?

A: Well..... yes, when $p = mn \pm 1$

Do you like ∇ ?

 ∇ = Bergeron-Garsia nabla operator

 e_n = elementary symmetric function

 ∇e_n = Frobenius series of diagonal harmonics

Conjecture (me, 2010): Given m>0, we have

$$\sum_{D^{mn+1}} q^{\text{shi}} t^{\text{ish}} \approx \nabla^m e_n$$
$$\sum_{D^{mn-1}} q^{\text{shi}} t^{\text{ish}} \approx \nabla^{-m} e_n$$

Questions:

* Other root systems?

* The full Frobenius series?

* Other coprime numbers *p*?

Fin.