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Simulation of the PRECCINSTA burner 

-  PRECCINSTA burner : 

-  Rectangular cuboid chamber : 110mm x 86mm x 86mm 
-  Air-methane mixture, Re=45000 
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[1] Lartigue, Meier & Berat, « Experimental and numerical investigation of self-excited combustion 
oscillations in a scaled gas turbine combustor », 2004 
[2] Galpin, Naudin, Vervisch, Angelberger, Colin & Domingo, « Large-eddy simulation of a fuel-lean premixed 
turbulent swirl burner », 2008 
[3] Moureau, Bérat & Pitsch, « An efficient semi-implicit compressible solver for large-eddy simulations », 
2007 
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Simulation of PRECCINSTA 

-  Successive grid refinements lead from 1.7 million cells to 2.6 billion[1] : 

-  Chosen among other possible solutions : 

-  direct import of large meshes 
-  reconstruction from partial meshes on the domain 

[1] Rivara, « Mesh refinement processes based on the generalized bisection of simplices », 1984 
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Simulation of PRECCINSTA (Large-eddy simulation) 

-  Cold flow : 
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Simulation of PRECCINSTA (Large-eddy simulation) 

-  Cold flow : 
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Simulation of PRECCINSTA (Large-eddy simulation) 

-  Movie of a combustion : 
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Speed-up on PRECCINSTA (solver used : Deflated PCG) 

-  Most of the computational time is spent in the Pressure-Poisson 
solver 
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Plan 

-  Numerical schemes 

-  Double Domain Decomposition methodology 

-  « Standard » domain decomposition deflation 

-  Improvements : 

-  linear/quadratic deflation : idea, implementation and results 
-  stabilization of PCG algorithm 
-  multi-level deflation : concept, implementation of three-level 
deflation 

-  Conclusion and perspectives 
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Numerical schemes 

-   Temporal scheme : fourth order time integration 

-   Runge-Kutta 4 (stable on a centered space discretization, 
provided that a CFL condition is satisfied) 

-  TRK4 (RK4 with tunable diffusion, obtained by combination of 
RK4 and Lax-Wendroff-type schemes) 

-   Runge-Kutta schemes known to be unstable but non-
dissipative, and Lax-Wendroff scheme known to be stable 
but dissipative 
- Idea : creating an affine combination of RK and LW 
second-order spatial derivatives, and adjusting the 
coefficients to tune the stability and diffusion of the scheme 
-  High CFL numbers for TRK4 schemes can make up for the 
additional computational costs involved 
-  Work to be published by Moureau and coworkers 
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Numerical schemes 

-  Spatial scheme : centered finite volume method of fourth order 

-  conservative : ideal for discontinuities arising in compressible 
flows (Variable Density Solver) for instance 

-  well-adapted to unstructured meshes : RHS computed as a 
sum of contributions on edges or faces 

-  Stabilization : Cabot & Cook fourth-order artificial viscosity 

-  Will approximate the cusp in the turbulent energy spectrum 
induced by fourth-order error 
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Discretization : DDD 

-  Unstructured 1D, 2D and 3D solver with different cell geometries 
afforded (e.g., tetrahedra and hexahedra in 3D). 

-  Double Domain Decomposition methodology :  
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Discretization : DDD 

-   To deal with this structure, internal communicators are added to the 
« usual » external communicators 
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Discretization : DDD 

-  Advantages of DDD : 
-  reduces costs related to parallel use 
-  massively parallel comp. (load balancing, local mesh refinement) 
-  well-adapted to preconditioned/deflated solvers 
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Linear solvers 

-  Deflated PCG : 

-  Preconditioner : inverse of the diagonal 
-  Domain Decomposition deflation method on the cell groups 

                       E=WTAW ; Q=WE-1WT ; P=I-AQ 

-  Quite a common use of deflation (introduced with a mathematical 
idea of using eigenvectors[1], but widely used as a preconditioner on a 
coarse grid[2]) 

-  Deflated BiCGStab(2) : 

-   Family of BiCGStab(L) introduced in 1993[3] in order to 
overcome the BiCGStab2 algorithm[4] 

[1] Nicolaides, « Deflation of Conjugate Gradients with Application to Boundary Value Problems », 1987 
[2] Vermolen, Vuik & Segal, « Deflation in preconditioned conjugate gradient methods for Finite Elements 
Problems », 2002 
[3] Sleijpen & Fokkema, « BiCGStab(L) for linear equations involving unsymmetric matrices with complex 
spectrum », 1993 
[4] Gutknecht, « Variants of BiCGStab for matrices with complex spectrum », 1991 



CNRS – UNIVERSITE et INSA de Rouen 

15/21 

Linear and quadratic deflation 

-   Idea : adding deflation vectors changes the solution of the 
deflated system 

      Constant              Linear       Quadratic 
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Linear and quadratic deflation : application (2D structured code) 

            Expected solution   First solution of DD deflation 

First solution of linear deflation       First solution of quadratic deflation 
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Linear and quadratic deflation 

-  Very promising : number of iterations substantially decreased 

-   Numerical instabilities in the 3D unstructured solver Yales2  
divergences 

-  Attempts to stabilize the deflated algorithm (A-DEF2) 
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Improvement of the DPCG algorithm 

-  Stabilization of Deflated PCG thanks to a 2009 article from Tang and 
coworkers[1] 

-  Deflation, Domain Decomposition and Multigrid Methods are 
written as preconditioners 

-  Multiplicative combination : C1 and C2 two preconditioners, then 
xi+1/2=xi+C1(b-Axi) and xi+1=xi+1/2+C2(b-Axi+1/2) give : 

xi+1=xi+(C1+C2-C2AC1)(b-Axi) 

-  Applied to the « usual » inverse of the diagonal M-1 and the 
deflation matrix Q gives birth to the adapted deflations (PA-DEF1 = 
M-1P+Q ; PA-DEF2 = PTM-1+Q) 

-  The A-DEF2, although being quite costly, is shown to be the 
most stable among nine different methods on a porous media 
problem and a bubbly flow problem 

[1] Tang, Nabben, Vuik & Erlangga, « Comparison of Two-Level Preconditioners Derived from Deflation, 
Domain Decomposition and Multigrid Methods », 2009 
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Multi-level deflation 

-  3-Level Deflated PCG : 

-   Inspired from the multigrid conception, with the benefits of deflation 
(for unstructured meshes) 

-   Thanks to the METIS library, every cell group is split into 
« subgroups », thus providing an intermediate level between the 
fine mesh and the coarse mesh 

-  The solver on the fine mesh uses deflation on the intermediate 
mesh, whose solver uses deflation on the coarse mesh 

-  Aims at reducing the time spent on the deflation on the cell groups 

-  Size of cell groups to be adapted carefully, in order not to spend 
too much time in communications 
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Multi-level deflation 

- Number of iterations of the deflated solver at each call, for identical 
cell group sizes (3D cartesian grid) : 
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Conclusion and perspectives 

-   Encouraging results obtained on the multi-level deflation when 
applied to test-cases 

-  Evolution of the existing Conjugate Gradient solvers 

-  Exposed weaknesses on PCG solvers that are to be corrected 

-  Next perspective : recycling the residuals at each iteration 

-  Sequence of linear systems Axn=bn to be solved (n stands for a 
time step e.g.) 
-  bn is a linear combination of the vectors {bn-l,…,bn-1} and an 
additional vector ßn 
-  Projection technique : assured not to deteriorate the system to 
be solved (contrarily to the standard change A(xn-xn-1)=bn-bn-1) 

[1] Fischer, « Projection techniques for iterative solutions of Ax=b with successive right-hand sides », 1996 
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Rupture primaire 

Thank you for your attention ! 


