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@ The Pure Streamfunction Formulation of the Navier-Stokes equations
@ Compact finite-difference schemes for biharmonic problems
@ Fast resolution procedure

@ Compact finite-difference schemes for the Navier-Stokes equation
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Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find u(z,t) € R?, p(x,t) € R solutions of

ut +uVu—vAu+Vp=0, € QCR%t>0
divu=0, 2€Q,t>0
u=0,z€0Q,t>0
u(z,0) = ug(z), =€

(NS)
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Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find u(z,t) € R?, p(x,t) € R solutions of

ut +uVu—vAu+Vp=0, € QCR%t>0
divu=0, 2€Q,t>0
u=0,z€0Q,t>0
u(z,0) = ug(z), =€

(NS)

v

Streamfunction formulation:

@ u = (—ty,¥z) = V1, V Au = A. The streamfunction + evolves according
to

A (AY) + (V1Y) - V(AY) —vA%p =0 , 2€Q , t>0
(Landau-Lifschitz, Fluid Dynamics).

A
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Navier-Stokes equations in 2D

Velocity-pressure formulation:

Find u(z,t) € R?, p(x,t) € R solutions of

ut +uVu—vAu+Vp=0, € QCR%t>0
divu=0, 2€Q,t>0
u=0,z€0Q,t>0
u(z,0) = ug(z), =€

(NS)

v

Streamfunction formulation:

@ The boundary conditions are given for all points (z, y) € 0%,

{ ¥(z,y,t) = 0 no-leak condition + gauge condition (1)

%Y (x,y,t) = 0 tangential velocity given

Initial data: vo(z,y) = ¥(z,y,t)|t=0, (z,y) € Q.

A
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Hermitian Derivative Operator

Definition

Suppose given (u;);cz. The hermitian derivative is (ug,;)icz given by

2 1 Wil — Ui—1
“Ug,i—1+ ZUgi T “Ug,itl =

Uil “ il o g 2
6 3 6 o '€ @
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Hermitian Derivative Operator

Suppose given (u;);cz. The hermitian derivative is (us,:)icz given by

2 1 Ujgpl — Uj—1
gUei-1 T JUs,i t gUs,ivl = H27h17

v
Finite Difference form

Can be rewritten as

iET @

OxUyg,i = Opuiy, 1 €L )
where o, 6 are

L 2 1 Wikl — Ui
gt = SUi—1 + SUi + Uit Spu; = % @
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Hermitian Derivative Operator

Suppose given (u;);cz. The hermitian derivative is (us,:)icz given by

2 1 Ujgpl — Uj—1
guz,ifl + guz,i + gua:,iJrl = Hrzihzv

v
Finite Difference form

Can be rewritten as

iET @

OzUg, 5 = Ozui, 1 E€Z (3)
where o, 6 are
1 2 1 Ujp1 — Uj—1
Toti = cti—1+ S + i, Soui = Hzihl (4)1
Fourth order accuracy
Ug,i = v/ (z;) + O(h4) (5)

y
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Hermitian Derivative Operator

Definition

Suppose given (u;);cz. The hermitian derivative is (us,:)icz given by

2 1 Ujrl — Uj— .
6“1,1—1 ar §Uz,i ar g’ua:,iJrl = %, 1 €L 2

y

Finite Difference form

Can be rewritten as

Oz, = OgUi, @ EZ (3)
where o, d, are
Oru; = %ui—l ¥ %uz ¥ %ui+17 Soui = % (4)1
Fourth order accuracy
ug,i = u'(2;) + O(h*) ®)
U s — UG (Ts) (6)

where us(z) is the cubic spline approximation to u(z).
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Three-Point Biharmonic Operator

Definition

Suppose given (u;);cz and (ug,;)icz the corresponding hermitian derivative. The
Three-Point Biharmonic (6%w;)iez is (62u; = (wit1 + wi—1 — 2u;)/h?),

12
6iui = 72 ((Sruwyi — 6iu1> ©)
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Three-Point Biharmonic Operator

Suppose given (u;)icz and (uz,;)icz the corresponding hermitian derivative. The
Three-Point Biharmonic (6%w;)iez is (62u; = (wit1 + wi—1 — 2u;)/h?),

12
6iui = 72 (&;uw' — 6iuz> ©)

v
Fourth order accuracy

§tu; = u®(2;) + O(RY) ()
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Three-Point Biharmonic Operator

Definition

Suppose given (u;)icz and (uz,;)icz the corresponding hermitian derivative. The
Three-Point Biharmonic (6%w;)iez is (62u; = (wit1 + wi—1 — 2u;)/h?),

12
6iui = 72 ((Sruwyi — 6iuz> ©)

Fourth order accuracy

§tu; = u®(2;) + O(RY) ()

Connection to cubic splines

Denote by us(x) the cubic spline interpolation of the data (u;)o<;<n With endpoints
derivatives Uz 0, Uz, N - For gridfunctions (uq;)ogigN, (ni)OSiSN with
Up =uy =g = oy =0,

1
(63w, o)) = /0 ul (2! (@) do ©)

where (u,v);, = h XN T v,
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A compact scheme for the biharmonic problem in 1D

One-dimensional biharmonic problem
Solve on I = [0, 1]

{ u(z)=f(z) , O<z<1 10)

u(0) = v/(0) = u(1) =u/(1) =0
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A compact scheme for the biharmonic problem in 1D

One-dimensional biharmonic problem

Solve on I = [0, 1]

{ u(z)=f(z) , O<z<1 10)

u(0) = v/(0) = u(1) =u/(1) =0

v

Compact scheme

The approximate problemis : find u = [ug, u1,- -+ ,un—_1, un] solution of

Shuj = 33 | Sous,y — 03u; | = fz;) , L<j<N -1

1 2 1 g an
FUz,j—1 t FUcj + §Ua g+l =0zu; , 1<j<SN -1

U = UN = Ug,0 = Ug,N =0
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Properties of 67

Let @ be the approximate solution of the biharmonic problem u(#)(z) = f(z) with
Dirichlet B.C. . Let u(z) be the exact solution and «* its evaluation at grid points. The
error e = 4 — u* = [ug,- - - ,un—1] satifies

le|ln < Ch* 12)

where C depends only on f.
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Properties of 67

Theorem

Let @ be the approximate solution of the biharmonic problem u(#)(z) = f(z) with
Dirichlet B.C. . Let u(z) be the exact solution and «* its evaluation at grid points. The
error e = 4 — u* = [ug,- - - ,un—1] satifies

leln < Ch* (12)

where C depends only on f.

| A\

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful
analysis of the structure of the matrix of % on a bounded domain [0, - - - , N].

A
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Properties of 67

Theorem

Let @ be the approximate solution of the biharmonic problem u(#)(z) = f(z) with
Dirichlet B.C. . Let u(z) be the exact solution and «* its evaluation at grid points. The
error e = 4 — u* = [ug,- - - ,un—1] satifies

leln < Ch* (12)

where C depends only on f.

| A\

Proof

Not straightforward result, due to the boundary conditions ! Method of proof: careful
analysis of the structure of the matrix of % on a bounded domain [0, - - - , N].

| N\

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the
fourth order acuracy in the “free” space. Here the pointwise truncation of 62 is 1 at
i=1,2,---,N—1.
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Properties of 67

Theorem

Let @ be the approximate solution of the biharmonic problem u(#)(z) = f(z) with
Dirichlet B.C. . Let u(z) be the exact solution and «* its evaluation at grid points. The
error e = 4 — u* = [ug,- - - ,un—1] satifies

leln < Ch* (12)

where C depends only on f.

Proof

| A\

Not straightforward result, due to the boundary conditions ! Method of proof: careful
analysis of the structure of the matrix of % on a bounded domain [0, - - - , N|

| N\

Accuracy

The pointwise truncation error on a bounded domain cannot be deduced from the
fourth order acuracy in the “free” space. Here the pointwise truncation of 62 is 1 at
i=1,2,---,N—1.

Energy method

Energy methods (as in FEM) provide only a suboptimal error estimate (so far).
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The nine-point Biharmonic Operator for the 2D bih,
problem

A compact Biharmonic operator

Biharmonic operator:

D2 = O4ep + Oep + 20207 (13)
Approximation by:
Dl i 5 = 6atbi g + Oyibi g + 2028515 5 (14)

where the discrete gradient V¢ = ('ll)z,iyj, zpy,z,y) is defined by the hermitian
relations

{ %wz,i—u + %d’z,i,j 4 %¢’z,i+1,j =0zPij , 1<i<N-—1 (1s)
5Vyi—1 1 5%y,i5 t §¥ysig+1 =0y, 1<j<N-1

4
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The nine-point Biharmonic Operator for the 2D bih.
problem

A compact Biharmonic operator

Biharmonic operator:
D2 = O4ep + Oep + 20207 (13)
Approximation by:
Dl i 5 = 6atbi g + Oyibi g + 2028515 5 (14)
where the discrete gradient V¢ = ('ll)z,iyj, zpy,z,y) is defined by the hermitian
relations

{ §¥mi-Ly + §Voig + g¥oinry =Sty , 1SESN -1 (15)

5Vyi—1 1 5%y,i5 t §¥ysig+1 =0y, 1<j<N-1

| A\

Stephenson Biharmonic

This operator is the same than the one introduced by J.W. Stephenson (Jour. Comp.
Phys. 1984).

\
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Stephenson scheme for the 2D Biharmonic Problem

Continuous Biharmonic problem

11)(907 y) = gl(wv y)v (xv y) € 0Q (16)

{ A%Y(z,y) = f(z,y), (z,y) €Q
g%(x:y) = gZ(wv y)7 (m,y) c 0N
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Stephenson scheme for the 2D Biharmonic Problem

Continuous Biharmonic problem

Azw(wv y) = f(x,y), (:E,y) €Q
11)(907 y) = gl(wv y)v (xv y) € 0Q (16)
G (@,9) = g2(z,y), (2,y) € 02

y

Discrete Biharmonic problem in a square

Solve the system in¢; ;, 0<4,57 <N

Abeij = f*(miryy), 1<i,j<N-1 @
subject to the boundary conditions

¢i,j:gf(ziayj)’ {iZOaNa OSJSN} or {j:07Na OSlSN},
"/’:c,i,j :_g;(zivyj)v lZO, OS]SNv
Yoy =95(xiy;), i=N, 0<j<N,
1/)y,i,j :_g;(xivyj)v .]:07 OS’LSNv
Py =95(i,9;), =N, 0<i<N.

(8) |
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Stencil of the nine-point Bih. operator
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Properties of the Stephenson scheme for the 2D Bih.
Problem

No artificial BC on the vorticity A

Only the natural BC on ) are required by the scheme. In the Dirichlet case, it is v, g—ﬁ.
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Properties of the Stephenson scheme for the 2D Bih.
Problem

No artificial BC on the vorticity A

Only the natural BC on ) are required by the scheme. In the Dirichlet case, it is v, g—i.

Second order accuracy

The operator Ai is second order accurate. The one-dimensional operators §% 1), 6311)
are 4th order accurate (in the “free” setting). The second order accuracy is due only to
the mixed term 6252.
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Matrix operator of 42 and 5%

Matrix operators

One has —éi = T/h2 with

2 -1 0 0
-1 2 -1 0

T = . . . . € My _1(R) 19
0 -1 2 -1
0 0 -1 2

The symmetric positive definite matrix P is deduced from 7" by

P=6I —T, (20)
v
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Matrix operator of 42 and 5%

Matrix operators

One has —éi = T/h2 with

2 -1 0 0
-1 2 -1 0

T = . . . . € My _1(R) 19
0 -1 2 -1
0 0 -1 2

The symmetric positive definite matrix P is deduced from 7" by

P=6I —T, (20)
v

The nine-point Biharmonic

1
A2 = —[GP_1T2®I+GI®P_1T2+2T®T] 1)

6 T 36 T
4[’111”2” :;1" ]®1N—1+F1N—1®[”1,”2][ ZJZT }

vy = (a — {)/2P~1 %61 = %eN,l) e RNV-1

(22)
vy = (@ + B)I/ZP_1 %el 4 %eN—l) @ =i
y
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Fast solver

Shermann-Morrison formula

The matrix of Ai is a low-rank perturbation (due to the BC) of a diagonal operator (in a
spectral basis), which represents the biharmonic in the “free space”:
36
A=B+ —RRT, (23)
B
The Sherman-Morrison formula gives
=il
At =B1—36B'R|Iyn_1) +36RTBR| RTBL (24)
v
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Fast solver

Shermann-Morrison formula

The matrix of Ai is a low-rank perturbation (due to the BC) of a diagonal operator (in a
spectral basis), which represents the biharmonic in the “free space”:
36
A=B+ —RRT, (23)
B
The Sherman-Morrison formula gives
=il
Al1=p"1_ 368’172{]4(1\7,1) o 36RTB*1R} RTBL. (24)

Fast resolution procedure

| A

A fast solver (N2 Iny(INV)) is deduced in 8 steps. The key steps are:
@ Using the FFT to compute BU = F (system in RIN=1)?),
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Fast solver

Shermann-Morrison formula

The matrix of Ai is a low-rank perturbation (due to the BC) of a diagonal operator (in a
spectral basis), which represents the biharmonic in the “free space”:
36
A=B+ —RRT, (23)
B
The Sherman-Morrison formula gives
=il
Al1=p"1_ 368’172{]4(1\7,1) o 36RTB*1R} RTBL. (24)

Fast resolution procedure

| A

A fast solver (N2 Iny(INV)) is deduced in 8 steps. The key steps are:

@ Using the PCG to solve

(14(N_1) 4+ 36RT6*1R) V =G, (systeminR*®-1), (25)
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A fourth order biharmonic operator

Fourth order Biharmonic

It is possible to modify the mixed term in the Stephenson operator to obtain a 4th order
accurate scheme. Simply replace 6262w by

82820i,5 = 365.85ti,5 — 050yby .5 — 030u%,i,5 = 05055 + O(h*). (26)
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A fourth order biharmonic operator

Fourth order Biharmonic

It is possible to modify the mixed term in the Stephenson operator to obtain a 4th order
accurate scheme. Simply replace 6252w by

82839 5 = 3050515 — 620y Yy.i.5 — 8y 0atbe i j = 02051 ;5 + O(h?). (26)

Fast solver for the fourth order Biharmonic

The fast solver follows the same principle than for the second order Biharmonic.
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Computing efficiency

N N=128 | N=256 | N=512 | N=1024 | N=2048
CPUyor 0.11s 0.45s 1.84s 791s | 34.63s
CPUo 0.093s | 0.39s 1.47s 6.46s | 27.72s
CPUyo; /(N? Log(N)) | 1.37(-6) | 1.24(-6) | 1.16(-6) | 1.09(-6) | 1.07(-6)

Table: Indicative CPU time on a Laptop
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Fourth order accuracy for ¢, Vi, A

N 1Y = Yplloo,n 1Ye — Y nlloo.h 1Y = %y hlloo,n 1A% — ApYpllo n
N = 16 3.42(-5) 1.00(-4) 1.00(-4) 3.99(-4)
conv. rate 4.04 4.01 4.01 4.00

N =32 2.08(-6) 6.21(-6) 6.21(-6) 2.48(-5)
conv. rate 4.01 4.00 4.00 4.00

N = 64 1.29(-7) 3.87(-7) 3.87(-7) 1.55(-6)
conv. rate 4.00 4.00 4.00 4.00

N = 128 8.06(-9) 2.41(-8) 2.41(-8) 9.68(-8)
conv. rate 3.99 3.99 3.99 3.83

N = 256 5.04(-10) 1.51(-9) 151(-9) 6.77(-9)
conv. rate 3.74 4.02 4.02 -0.22
N = 512 3.76(-11) 9.27(-11) 9.07(-11) 7.90(-9)
conv. rate -0.13 0.19 0.19 0.59

N — 1024 | 4.12(-11) 8.09(-11) 8.09(-11) 5.22(-8)

Table: Error and convergence rate for Test Case 1 with the fourth order
scheme
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Second order scheme for the Navier-Stokes equation

Navier-Stokes equation in streamfunction

O+ (V1Y) - V(AY) —vA%p =0, z€Q , t>0 27
+ Dirichlet B.C on ).
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Second order scheme for the Navier-Stokes equation

Navier-Stokes equation in streamfunction

O+ (V1Y) - V(AY) —vA%p =0, z€Q , t>0 27
+ Dirichlet B.C on ).

Approximation in space (method of lines)

(x4, yj,t) = s ;(t), solution of
NP — Dyi i Arba,ij + Vi j Drtyij —vARD; =0 , 2€Q , t>0 (28)
+ Dirichlet B.C on i/l;i,j, &m,i,jv 12:'y,i,j-
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Second order scheme for the Navier-Stokes equation

Navier-Stokes equation in streamfunction

O+ (V1Y) - V(AY) —vA%p =0, z€Q , t>0 27
+ Dirichlet B.C on ).

Approximation in space (method of lines)

| A\

(x4, yj,t) = s ;(t), solution of
NP — Dyi i Arba,ij + Vi j Drtyij —vARD; =0 , 2€Q , t>0 (28)
+ Dirichlet B.C on i/l;i,j, im,i,jv 12:'y,i,j-

Fuly centered second order scheme

| A\

The operator in space are just translated on the discrete grid using:
@ Second order Laplacian, second order Biharmonic Five-point Laplacian:

AP(xi,y5) = Aptij, A%Y(z,y;) = A2y ; (29)
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Second order scheme for the Navier-Stokes equation

Navier-Stokes equation in streamfunction

O+ (V1Y) - V(AY) —vA%p =0, z€Q , t>0 27
+ Dirichlet B.C on ).

Approximation in space (method of lines)

| A\

(x4, yj,t) = s ;(t), solution of
NP — Dyi i Arba,ij + Vi j Drtyij —vARD; =0 , 2€Q , t>0 (28)
+ Dirichlet B.C on i/l;i,j, im,i,jv 12:'y,i,j-

Fuly centered second order scheme

| A\

The operator in space are just translated on the discrete grid using:

@ Second order convective term

(VEU(@i, y5)) - V(AY(@i,95)) = —Dy i j DrDaij + DaijDriby,i;  (30)
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Numerical analysis

Let T > 0. Then there exist constants C, kg > 0, depending possibly on T, v and on
the exact solution v, such that, forall0 < ¢t < T,

162 (%) = P + 185 (w(t) = D) < Ch® , 0 <h < ho (X0

where 9 (t) = 5 ;(t) is the pointwise interpolated exact solution and QZi,j(t) is the
solution of the semidiscrete scheme.
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Numerical analysis

Let T > 0. Then there exist constants C, hgy > 0, depending possibly on T, v and on
the exact solution v, such that, forall0 < ¢t < T,

162 (%) = P + 185 (w(t) = D) < Ch® , 0 <h < ho (X0

where 9 (t) = 5 ;(t) is the pointwise interpolated exact solution and QZi,j(t) is the
solution of the semidiscrete scheme.

Properties

@ Second order centered approximation (no upwinding).

@ No need of boundary conditions on the vorticity and no uncontrolled pressure
modes.
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Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete
grid using:
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Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete
grid using:

@ Fourth order Laplacian, fourth order Biharmonic
2
Dp(m,y;5) =~ Aptpij — 2 (644i 5 + 654 5)

2
{ D2(wi, ;) = D30 — 04 (1= 282 ) iy + 64 (1= B82) iy + 26363
(32)
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Fourth order scheme for the Navier-Stokes equation

Centered fourth order scheme

The operators in space are just translated from the continuous ones on the discrete
grid using:

@ Fourth order convective term

(VE9(@i,95)) - V(IAY(mi,55)) =~ —y,ij A, + Yo,ii Antby,ig
h2

12 ( = 02 (Vy,i,5(83 %5 + Oyi ;)

+ Sy (6,5 (65i,5 + Ogtbi ;) >
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High order IMEX time-scheme
(Spalart-Moser-Rogers)

The scheme is

U1 _ Ahﬂ—'"
U2 = Ul 4 At (41(=C}) + 01 D}, + 81D} ) + S aepnta/15
U3 = U2 + At (7p(=C3) + C1(=Ch) + ap D} + B, D} ) + At (3 F7HL/3 — & pntd/15
l U* = U + At (v3(=C3) + €2(—C}) + a3 D} + 3D}, ) + At (L F™ + ZFnH1/2 4 Lpntl _ 2 pntl/3) |
(34)
The values of the parameters are
29 =3 1
@] = — ay = — @z = -
1
B % B; L B X
= — y = — 3 = =
]860 84 36 (35)
71 = E Y2 = E Y3 = ;
=17 —5
¢1= — = —
60 12
4
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High order IMEX time-scheme
(Spalart-Moser-Rogers)

The scheme is

U1 _ Ahﬂ—'"
U2 = Ul 4 At (41(=C}) + 01 D}, + 81D} ) + S aepnta/15
U3 = U2 1 At (yo(=C2) + ¢1(—C}) + ap D} + B2Di§ + At E%F"+1/3 — & pnt4/15

U* = U + At (v3(=C3) + €2(—C}) + a3 D} + 3D}, ) + At (L F™ + ZFnH1/2 4 Lpntl _ 2 pntl/3) |

(34)
The values of the parameters are
29 =3 1
@] = — ay = — a3z = -
1
B % B; L B X
= — ) = — 3= -
]860 84 36 (35)
m=F Mmsp MW=
—17 =B
1= — =
60 12
4

Cost of one time-step
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Assessing the fourth order accuracy

e = absolute error for 1, e, =, relative error for 1, e, = absolute error for .

mesh 9x9 Rate 17 x 17 Rate 33 x 33 Rate 65 X 65

t=0.25 ¢ | 5.0867(-3) | 4.06 | 3.0525(-4) | 4.02 | 1.8835(-5) | 4.00 | 1.1734(-6)
er 9.4936(-3) 5.7441(-4) 3.5460(-5) 2.2092(-6)

ex 2.6390(-3) | 3.89 | 1.7837(-4) | 3.93 | 1.1670(-5) | 3.98 | 7.3752(-7)
t=05 e | 3.2224(-3) | 4.00 | 2.0085(-4) | 4.00 | 1.2541(-5) | 4.00 | 7.8361(-7)
er 7.7407(-3) 4.8536(-4) 3.0317(-5) 1.8944(-6)

ex 3.2285(-3) | 4.02 | 1.9896(-4) | 4.00 | 1.2436(-5) | 4.00 | 7.7745(-7)
t=0.75 e | 2.4887(-3) | 4.00 | 1.5508(-4) | 4.00 | 9.6887(-6) | 4.00 | 6.0551(-7)
er 7.6730(-3) 4.8119(-4) 3.0075(-5) 1.8796(-6)

ex 2.5516(-3) | 4.02 | 1.5723(-4) | 4.00 | 9.8187(-6) | 4.00 | 6.1364(-7)
t=1c¢e¢ 1.9376(-3) | 4.00 | 1.2074(-4) | 4.00 | 7.5434(-6) | 4.00 | 4.7145(-7)
er 7.6796(-3) 4.8103(-4) 3.0066(-5) 1.8791(-6)

exr 1.9885(-3) | 4.02 | 1.2255(-4) | 4.00 | 7.6526(-6) | 4.00 | 4.7826(-7)

Table 1: Compact scheme for Navier-Stokes with exact solution:
= (1-22)3(1—y?)3eton[-1,1] x [, 1]. We represent e,: the I, error for the

streamfunction and e, the max error in the U? velocity =—8y1. At = Ch?.
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Max |¢| behaviour at Re = 10000

%o w0 w0 w0 w0 w0 w0 a0 w0 w0 50 $im o e ws o zw om zm om am oz

Figure: Driven Cavity for Re = 10000 : Max streamfunction. Computations
are done with NV = 65, with At = 1/90.
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ion contours, Re=7500, T=560, mesh 65x65 ‘Streamfunction contours, Re=10000, T=500, mesh 65465

01206 —————"5.012b6; Tk o ——T601%s
05412 5 02450;
e e
= 04900

&\110
&
0.012¢ EZJ

o
o251

24124

0.0;
oz

o
012302450,

o 01 02 0a 04 05 06 07 o0a 03 1

0 01 02 03 04 05 06 07 08 09 1

(a) Re=7500 (b) Re=10000

Figure: Driven Cavity for Re = 7500, 10000 : Streamfunction Contours with
the fourth-order scheme
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Velocity in the middle of the cavity, Re = 7500,

Re = 10000

Velocity Components, Re=7500, 4th order scheme, T=560, mesh 65x65 Velocity Components, Re=10000, 4th order scheme, T=500, mesh 65x65
1

Figure: Velocity components for the driven cavity problem. Left: Re = 7500, fourth-order scheme with N' = 65 (solid line),
Ghia-Ghia-Shin. with N' = 257 (circles). Right: Re = 10000 fourth-order scheme with N = 65 (solid Line), Ghia-Ghia-Shin with
N = 257 (circles).
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Computing efficiency for NS (driven cavity)

N = 65, Re = 1000 N = 129, Re = 1000 N = 256, Re = 5000
8000 it., At = 1/60 12000 it., At = 1/60 50000 it., At = 1/180
4 min (0.03 sec/it) | 23min30sec. (0.11sec/it.) | 7h 50min.(0.56seclit.)

Table: Indicative CPU time for the driven cavity on a Laptop
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Implementation so far

@ Fourth order scheme with fast solver in O(N? In(N)). Fortran90 code.

@ Driven cavity computations up to Re = 10000, beyond the first Hopf bifurcation.
@ Numerical analysis
%)

Derivation and first implementation of the 3D NS equations in streamfunction
formulation in a cube

@ Design and tests of a cartesian embedded biharmonic scheme for irregular
geometries

@ Application to other models involving biharmonic equations (e.g. image
processing).
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In progress

@ Spectral analysis of fourth order problems. Application to the Stokes modes in a
square/cube.

@ Still enhance the fast solver (also in 3D)

@ Other applications to fourth order problems solving: HJ (Hamilton-Jacobi), KS
(Kuramoto-Sivashinsky), MEMS (Micro-Electro-Mechanical Systems).

@ Driven cavity in a cube.

@ Irregular geometries on cartesian grids using embedded/immersed boundaries
seem tractable.
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