Inequalities For Random Multilinear Operators

Michael Christ, UC Berkeley

BIRS, July 26, 2010

Michael Christ, UC Berkeley Inequalities For Random Multilinear Operators

A B K A B K

Three Themes

- Fourier transform and linear structure
- Multilinear operators
- Probability/random structures

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Bilinear operators aka trilinear forms

$$\mathcal{T}_{\omega}(f,g,h) = \sum_{x,y=1}^{N} f(x)g(y)h(x+y)k_{\omega}(x-y)$$

where k_{ω} is a random probability measure.

One point of view re multilinear operators: $T_{\omega}(f, g, h) = \text{inner product of } T_{\omega,h}f \text{ with test function } g.$ Seek worst case (in h) bounds for **linear operator** $T_{\omega,h}$.

Worst case inequalities comparing $\mathcal{T}_{\omega}(f, g, h)$ to its expected value, for large N — worst h, for typical ω .

向下 イヨト イヨト

A venerable theme: Smallness of Fourier transforms in absence of linear structure

- If μ is supported on a curved submanifold, then $\widehat{\mu}(\xi) = O(|\xi|^{-\rho})$ as $|\xi| \to \infty$.
- Let μ = random probability measure on Z_N, m = uniform probability measure. Then max_{ξ≠0} |μ̂(ξ) m̂(ξ)| = O(N^{-1/2} log(N)) with high probability.
- Natural Cantor-Lebesgue-type probability measures on random fractal sets have Fourier transforms which tend to zero at a natural rate as $|\xi| \rightarrow \infty$. (e.g. Salem 1951)
- Let p= large prime and μ_p(x) = 1 if x is a quadratic residue modulo p, and μ_p(x) = 0 otherwise. Then sup_{ξ≠0} |μ_p(ξ)| ≤ Cp^{-1/2}, whereas μ_p(0) ≍ 1.

(四) (日) (日)

One More Illustration

Consider random matrix

$$\begin{pmatrix} r_{1,1}(\omega) & \cdots & r_{1,N}(\omega) \\ \vdots & \vdots & \vdots \\ r_{N,1}(\omega) & \cdots & r_{N,N}(\omega) \end{pmatrix}$$

with entries which are: $O(N^{-1})$, iid, with mean zero.

With high probability as $N \to \infty$, the ℓ^2 operator norm is $O(\mathbb{N}^{-1/2} \cdot N^{\varepsilon})$.

伺 とう きょう とう とう

Quantum Interpretation(s)

- Smallness of μ̂ can be reinterpreted operator-theoretically in terms of T(f) = f * μ, by virtue of Plancherel's theorem; Small Fourier transform ⇔ small operator norm.
- Goal: Smallness of C-valued multilinear form

$$\mathcal{T}_{\omega}(f_1,\cdots,f_M) = \sum_{x,y=1}^{N} \mathbf{r}_{\omega}(\mathbf{x},\mathbf{y}) \prod_{j=1}^{M} f_j(\mathbf{L}_j(\mathbf{x},\mathbf{y}))$$

where $L_j : \mathbb{Z}^2 \to \mathbb{Z}$ are **linear** and $r_{\omega}(x, y)$ are either jointly **independent** or (Toeplitz case) $r_{\omega}(x, y) \equiv r_{\omega}^{\heartsuit}(\mathbf{x} - \mathbf{y})$ with $\{r_{\omega}^{\heartsuit}(x)\}$ jointly independent.

向下 イヨト イヨト

• We are interested in $\ell^{\mathbf{p}_1} \otimes \ell^{\mathbf{p}_2} \otimes \cdots \otimes \ell^{\mathbf{p}_M}$ bounds with $\sum_j p_j^{-1} = 1$, that is,

$$\Big|\sum_{x,y=1}^N r_\omega(x,y) \prod_{j=1}^M f_j(L_j(x,y))\Big| \lesssim \mathsf{N}^{-
ho} \prod_j \|f_j\|_{
ho_j}$$

where r_{ω} has mean zero and $\mathbb{E}|r_{\omega}| \simeq N^{-1}$.

- These "averaging" type bounds scale naturally for Tauberian-style ergodic-theoretic interpretations.
- The cancellation condition $\mathbb{E}_{\omega}(r_{\omega}(x, y)) = 0$ is essential for smallness of the operator norm.
- Mean zero arises naturally by comparing more general objects to their mean/expected values.

- 사례가 사용가 사용가 구용

A multilinear inequality in terms of $\ell^2 \otimes \ell^2 \otimes \ell^\infty \cdots \otimes \ell^\infty$ is equivalent to a worst case estimate for a linear operator:

• Modify random matrix

$$(r_{\omega}(x,y))_{x,y=1}^{N}$$

by multiplying entries by arbitrary

$$\prod_{k=3}^M f_k(L_k(x,y)) \;\; ext{with} \; \|f_k\|_{\ell^\infty} \leq 1.$$

- We want to bound the largest possible norm.
- If f_k were allowed to depend freely on both variables (x, y), then cancellation could be completely destroyed and the best estimate would be O(1).

・回 と く ヨ と く ヨ と

A Cautionary Example

Let
$$G_p = \mathbb{Z}_p^d \times \mathbb{Z}_p$$
; $|x'|^2 = |(x_1, \cdots, x_d)|^2 = \sum_{j=1}^d x_j^2$.
 $\mu_p(x', x_{d+1}) = \begin{cases} p^{-d} & \text{if } \mathbf{x_{d+1}} = |\mathbf{x}'|^2 \\ 0 & \text{otherwise} \end{cases}$,
 $\nu_p = \mu_p - p^{-d-1}$.
Then

$$\big|\sum_{x,y}f(x)g(y)\nu_p(x-y)\big| \lesssim p^{-d/2}\|f\|_2\|g\|_2 \ \forall f,g,$$

but there exist f, g, h such that

$$\left|\sum_{x,y} f(x)g(y)\mathbf{h}(\mathbf{x}+\mathbf{y})\nu_p(x-y)\right| = \|f\|_2\|g\|_2\|h\|_{\infty};$$

there is no cancellation at all.

(1日) (日) (日)

æ

The counterexample:

$$h(x) = e^{2\pi i |\mathbf{x}'|^2/p}$$

$$f(x) = e^{2\pi i [\mathbf{x}_{d+1} - 2|\mathbf{x}'|^2]/p}$$

$$g(x) = e^{2\pi i [-\mathbf{x}_{d+1} - 2|\mathbf{x}'|^2]/p}$$

satisfy

$$f(x)g(y)h(x+y) \equiv 1$$
 when $x_{d+1} - y_{d+1} = |x' - y'|^2$

but not at typical points $(x, y) \in G_p^2$.

The lesson: An obstruction to the trilinear inequality is **quadratic structure** (of μ_p).

・ 同 ト ・ ヨ ト ・ ヨ ト

This issue is related to the distinction between uniformity and **Gowers uniformity**, which is at the heart of certain advances in additive combinatorics related to Szemerédi's theorem, but is not exactly the same issue.

First Theorem

Consider linear operator, with $\|\mathbf{g}_{\mathbf{j}}\|_{\infty} \leq 1$:

$$T_{\omega,\{g_j\}}(f)(x) = \sum_{y=1}^N r_{\omega}(\mathbf{x} - \mathbf{y})f(x)\prod_{j=1}^M \mathbf{g}_j(\mathbf{L}_j(\mathbf{x}, \mathbf{y})).$$

Let: Ω = probability space with $\{s_{\omega}(x) : x \in \mathbb{Z}\}$ iid $\{0, 1\}$ -valued $s_{\omega}(x) = 1$ with probability p $r_{\omega}(x) = (Np)^{-1}s_{\omega}(x) - N^{-1}$ for integers $x \in [-N, N]$ Thus $\mathbb{E}_{\omega}r_{\omega}(x) \equiv 0$ for $x \in [-N, N]$ while $\mathbb{E}_{\omega}|r_{\omega}(x)| \simeq N^{-1}$.

Theorem

Suppose that $M \ge 1$ and $0 \le \gamma < 2^{-M}$. There exists $\varepsilon > 0$ such that for all $N \ge 1$ and $p = N^{-\gamma}$,

$$\mathbb{E}_{\omega} \sup_{\substack{\{\mathbf{g}_j\}}} \|T_{\omega,\{\mathbf{g}_j\}}\|_{op} \leq CN^{-\varepsilon}.$$

Same Theorem — A Defect?

Theorem

Suppose that $M \ge 1$ and $0 \le \gamma < 2^{-M}$. Let $p = N^{-\gamma}$. Then

$$\mathbb{E}_{\omega} \sup_{\{g_j\}} \| \mathcal{T}_{\omega,\{g_j\}} \|_{op} \leq C N^{-\varepsilon}.$$

The theorem applies only when the matrix $(s_{\omega}(x - y))$ is not too sparse, in terms of N; e.g. in the trilinear case, our proof requires that the density of points "selected" be $\gg N^{-1/2}$.

I simply **do not know** whether $\gamma < 2^{-M}$ is necessary. Method of proof does break down irretrievably past this threshold. Could restriction be an artifact of the proof? Today's results should be regarded as preliminary.

- 4 同 6 4 日 6 4 日 6

An Easier Result

• Order of quantifiers matters.

$$\sup_{g_1,\cdots,g_M} \mathbb{E}_{\omega} \sup_f \|T_{\omega}(f,g_1,\cdots,g_M)\|_2$$

is a related, but possibly smaller, quantity.

• Easier result:

$$L_{\omega,h}(f)(x) = \sum_{y} r_{\omega}(x-y) \mathbf{h}(\mathbf{x}, \mathbf{y}) f(y)$$

satisfies

$$\mathbb{E}_{\omega} \| L_{\omega,h} \|_{\mathsf{op}} \leq C_{arepsilon} \mathcal{N}^{arepsilon} (\mathcal{N}p)^{-1/2} \| h \|_{\ell^{\infty}}$$

for all $\varepsilon > 0$ provided $p \ge N^{-\gamma}$ and $\gamma < 1$.

• Proof: Expand a high power of $L^*_{\omega,h}L_{\omega,h}$ and take expectation of its trace.

・ 同 ト ・ ヨ ト ・ ヨ ト

Carleson-style maximal analogue

$$T^*_{\omega,\{g_j\}}(f)(x) = \sup_{\xi} \Big| \sum_{y=1}^N \mathbf{e}^{\mathbf{i}\xi \mathbf{y}} r_{\omega}(x-y) f(x) \prod_{j=1}^M g_j(L_j(x,y)) \Big|.$$

Theorem

Suppose that $M \ge 1$, and $p = N^{-\gamma}$ where $0 \le \gamma < 2^{-M-1}$. Then

$$\mathbb{E}_{\omega} \sup_{\{g_j\}} \|T^*_{\omega,\{g_j\}}\|_{op} \leq C \mathsf{N}^{-arepsilon}.$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Let T = invertible measure-preserving transformation on probability space.

Let $s_n(\omega) = 1$ with probability $n^{-\gamma}$, and = 0 otherwise. Random sparse subsequences of \mathbb{N} : $(n_k(\omega))_{k \in \mathbb{N}}$ consists of all $n \in \mathbb{N}$ for which $s_n(\omega) = 1$, listed in increasing order.

Theorem

If $0 \le \gamma < 2^{-M+1}$ then for almost every $\omega \in \Omega$, for all $f_1, \cdots, f_M \in L^{\infty}(X)$,

$$\lim_{N\to\infty} N^{-1} \sum_{k=1}^{N} f_1(T^{n_k}(x)) f_2(T^{2n_k}(x)) \cdots f_M(T^{Mn_k}(x))$$

exists in $L^1(X, d\mu(x))$.

→ 同 → → 目 → → 目 →

Another Application to Ergodic Theory

- For the full sequence of iterates in the theorem on the preceding slide, see Tao and Host-Kra, also an alternative approach of Austin. Theirs is the deep result; the refinement to subsequences is a comparatively simple add-on.
- The Carleson-style maximal analogue has a corresponding application to an extension of the *Return Times* theorem (Bourgain; Demeter-Lacey-Tao-Thiele), replacing averages over a full sequence of iterates by averages over a sparse random subsequence of iterates.

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-Toeplitz-style Variant

- Next: Analogous results for random matrices $(r_{\omega}(x, y))_{x,y}$, with all entries jointly independent.
- Consider jointly independent random selector variables $s_{\omega}(x, y)$ for $(x, y) \in [-N, \cdots, N]^2$, satisfying $s_{\omega}(x, y) = 1$ with probability p, and = 0 otherwise.
- Then $\mathbb{E}(\sum_{x} s_{\omega}(x, y)) \asymp Np$ and $\mathbb{E}(\sum_{y} s_{\omega}(x, y)) \asymp Np$.
- Define $r_{\omega}(x, y) = (Np)^{-1}(s_{\omega}(x, y) p)$ so that $\mathbb{E}_{\omega}r_{\omega}(x, y) = 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Non-Toeplitz-style Variant

Consider

$$T_{\omega,\{g_j\}}(f)(x) = \sum_{y} r_{\omega}(x,y)f(y)\prod_{j=1}^{M} g_j(L_j(x,y)).$$

As always, $\|g_j\|_{\infty} \leq 1$.

Theorem

Let $M \ge 1$ and $0 \le \gamma < 1$. For $N \ge 1$ set $p = N^{-\gamma}$. For any $\{L_j : 0 \le j \le M\}$ and any $\varepsilon > 0$,

$$\mathbb{E}_{\omega} \sup_{\{g_j\}} \|T_{\omega}\|_{op} \leq C_{\mathcal{M},\varepsilon} N^{\varepsilon} N^{-(1-\gamma)/2}.$$

- 4 回 2 - 4 □ 2 - 4 □

Method of Proof

For
$$T(f)(x) = \sum_{y} r_{\omega}(\mathbf{x} - \mathbf{y})f(y)g(x + y)$$
:

$$\|Tf\|_{\ell^{2}}^{2} = \sum_{z \in \mathbb{Z}} \left(\sum_{x,y} F_{z}(x)G_{z}(x + y)\rho_{\omega,z}(x - y)\right)$$
where $F_{z}(x) = f(x)f(x + z)$,
 $G_{z}(x) = g(x)g(x + z)$,
 $\rho_{\omega,z}(x) = r_{\omega}(x)r_{\omega}(x + z)$.

- Fix arbitrary z. After linear change of variables, inner sum represents a linear convolution operator ℓ² → ℓ².
- Need bound for $\widehat{\rho_{\omega,z}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Must sacrifice a factor of $N^{1/2}$ to control $||G_z||_{\ell^2}$ in terms of $||g||_{\ell^{\infty}}$.
- $\rho_{\omega,z}$ is a product of two singular measures, hence is even more singular.
- Need bounds for $\widehat{\rho_{\omega,z}}(\xi) = \sum_{x} r_{\omega}(x) r_{\omega}(x+z) e^{-ix\xi}$.
- Independence of summands no longer holds.
- $\widehat{\rho_{\omega,z}}$ is very badly behaved for z = 0. But a bounded number of exceptional z can be handled by a different (trivial) bound.
- If our original measure is too sparse, then the support of $\rho_{\omega,z}$ may consist of one or zero points for most z. Then there will be no possible cancellation in the calculation of $\widehat{\rho_{\omega,z}}$. The argument then breaks down utterly.

소리가 소문가 소문가 소문가

Proofs, continued

- Higher degrees *M* of multilinearity are treated by induction.
- *TT*^{*} is applied as above, but repeatedly; each application reduces *M* by 1.
- **Different base case** for different *M*. Linear convolution operator, with $r_{\omega}(x)$ replaced by $\prod_{j=1}^{M} r_{\omega}(x + z_j)$ for arbitrary (z_1, \dots, z_M) .
- Each iteration leads to a small number of exceptional parameters *z*, which must be handled differently.
- For large M, the product of M translates of r_{ω} is very singular.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof for non-Toeplitz case $r_{\omega}(x, y)$

- Suppose *f*, *g*, *h* are characteristic functions of sets *F*, *G*, *H*. **Fix** *F*, *G*, *H*.
- Our trilinear form is $\sum_{(x,y)\in\mathcal{E}} r_{\omega}(x,y)$ where $\mathcal{E} = \{(x,y) : x \in F, y \in G, \text{ and } x + y \in H\}.$
- An auxiliary argument reduces matters to the case where $|\mathcal{E}| \gtrsim N^{2-\eta}$ for a natural (and small) value of η .
- This is a sum of |*E*| ≫ 1 independent random variables, so is within a bounded number of standard deviations of its mean (= 0) with high probability. Its standard deviation is proportional to

$$N^{-1}p^{-1/2}|\mathcal{E}|^{1/2} \asymp p^{-1/2} \ll N^{1/2},$$

while the bound we seek is

$$N^{1-\varepsilon}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

• Thus a standard Gaussian distribution would give the probability of a bad event, for fixed *F*, *G*, *H*, to be

 $\lesssim e^{-c \textit{N}^{1+\delta}}$

for a certain $\delta(\gamma) > 0$, if $p \asymp N^{-\gamma}$ with $\gamma < 1$.

- Chernoff's inequality (a generalization of Khinchine's inequality) gives hybrid exponential/exponential squared large deviations bound which suffices for this purpose.
- This only applies for (*F*, *G*, *H*) fixed. The **total number of such triples** is

$$\lesssim e^{CN}$$
.

Therefore the union over all (F, G, H) of all bad events has tiny probability.

소리가 소문가 소문가 소문가

(Bourgain; Demeter-Lacey-Tao-Thiele)

The return times theorem concerns almost-everywhere existence of limits

$$\lim_{N\to\infty} N^{-1} \sum_{k=1}^N f(T^{k(\omega)}(x))g(S^{k(\omega)}(y))$$

where T, S are unrelated measure-preserving transformations on two different spaces X, Y.

- The set of good values of x has full measure, and is **universal**; it depends on f but works for every dynamical system (Y, S) and every g.
- The first result of this type was due to Bourgain and applied only to f, g in certain combinations of L^p spaces.
- Demeter-Lacey-Tao-Thiele proved the extension to all $f \in L^p$ and $g \in L^q$ with $p \in (1, \infty]$ and $q \ge 2$.

Application of Carleson-style Operators to Return Times

The case M = 0 has an ergodic-theoretic consequence, for return times of sparse random subsequences. Let $(X, \mathcal{A}, \mathcal{T}, \mu)$ be any nonatomic dynamical system with probability measure μ .

Theorem

Let $0 \le \gamma < \frac{1}{2}$. Almost every random sequence $\{n_k(\omega)\}$ constructed as above has the this property: Let $p \in (1, \infty]$ and $q \ge 2$. For each $f \in L^p(X)$ there exists a subset $X_0 \subset X$ of full measure such that for every dynamical system $(Y, \mathcal{F}, \nu, \sigma)$, every $g \in L^q(Y)$, and every $x \in X_0$,

$$\lim_{N\to\infty} N^{-1} \sum_{k=1}^N f(T^{n_k(\omega)}(x))g(S^{n_k(\omega)}(y))$$

exists for ν -almost every $y \in Y$.

- 4 回 ト 4 ヨ ト 4 ヨ ト