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Three Themes

Fourier transform and linear structure

Multilinear operators

Probability/random structures

Michael Christ, UC Berkeley Inequalities For Random Multilinear Operators



Bilinear operators aka trilinear forms

Tω(f , g , h) =
N∑

x ,y=1

f (x)g(y)h(x + y)kω(x − y)

where kω is a random probability measure.

One point of view re multilinear operators:
Tω(f , g , h) = inner product of Tω,hf with test function g . Seek
worst case (in h) bounds for linear operator Tω,h.

Worst case inequalities comparing Tω(f , g , h) to its expected value,
for large N — worst h, for typical ω.
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A venerable theme: Smallness of Fourier transforms in
absence of linear structure

If µ is supported on a curved submanifold, then
µ̂(ξ) = O(|ξ|−ρ) as |ξ| → ∞.

Let µ = random probability measure on ZN , m = uniform
probability measure. Then
maxξ 6=0 |µ̂(ξ)− m̂(ξ)| = O(N−1/2 log(N)) with high
probability.

Natural Cantor-Lebesgue-type probability measures on
random fractal sets have Fourier transforms which tend to
zero at a natural rate as |ξ| → ∞. (e.g. Salem 1951)

Let p= large prime and µp(x) = 1 if x is a quadratic residue
modulo p, and µp(x) = 0 otherwise. Then
supξ 6=0 |µ̂p(ξ)| ≤ Cp−1/2, whereas µ̂p(0) � 1.
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One More Illustration

Consider random matrix r1,1(ω) · · · r1,N(ω)
...

...
...

rN,1(ω) · · · rN,N(ω)


with entries which are: O(N−1), iid, with mean zero.

With high probability as N →∞, the `2 operator norm is
O(N−1/2 · Nε).
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Quantum Interpretation(s)

Smallness of µ̂ can be reinterpreted operator-theoretically in
terms of T (f ) = f ∗ µ, by virtue of Plancherel’s theorem;
Small Fourier transform ⇔ small operator norm.

Goal: Smallness of C-valued multilinear form

Tω(f1, · · · , fM) =
N∑

x ,y=1

rω(x, y)
M∏

j=1

fj(Lj(x, y))

where Lj : Z2 → Z are linear
and rω(x , y) are either jointly independent
or (Toeplitz case)
rω(x , y) ≡ r♥ω (x− y) with {r♥ω (x)} jointly independent.
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We are interested in `p1 ⊗ `p2 ⊗ · · · ⊗ `pM bounds with∑
j p−1

j = 1, that is,

∣∣∣ N∑
x ,y=1

rω(x , y)
M∏

j=1

fj(Lj(x , y))
∣∣∣ . N−ρ

∏
j

‖fj‖pj

where rω has mean zero and E|rω| � N−1.

These “averaging” type bounds scale naturally for
Tauberian-style ergodic-theoretic interpretations.

The cancellation condition Eω(rω(x , y)) = 0 is essential for
smallness of the operator norm.

Mean zero arises naturally by comparing more general objects
to their mean/expected values.
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A multilinear inequality in terms of `2 ⊗ `2 ⊗ `∞ · · · ⊗ `∞ is
equivalent to a worst case estimate for a linear operator:

Modify random matrix (
rω(x , y)

)N
x ,y=1

by multiplying entries by arbitrary

M∏
k=3

fk(Lk(x , y)) with ‖fk‖`∞ ≤ 1.

We want to bound the largest possible norm.

If fk were allowed to depend freely on both variables (x , y),
then cancellation could be completely destroyed and the best
estimate would be O(1).
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A Cautionary Example

Let Gp = Zd
p × Zp; |x ′|2 = |(x1, · · · , xd)|2 =

∑d
j=1 x2

j .

µp(x ′, xd+1) =

{
p−d if xd+1 = |x′|2

0 otherwise
,

νp = µp − p−d−1.
Then ∣∣∑

x ,y

f (x)g(y)νp(x − y)
∣∣ . p−d/2‖f ‖2‖g‖2 ∀f , g ,

but there exist f , g , h such that∣∣∑
x ,y

f (x)g(y)h(x + y)νp(x − y)
∣∣ = ‖f ‖2‖g‖2‖h‖∞;

there is no cancellation at all.
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The counterexample:

h(x) = e2πi |x′|2/p

f (x) = e2πi [xd+1−2|x′|2]/p

g(x) = e2πi [−xd+1−2|x′|2]/p.

satisfy

f (x)g(y)h(x + y)≡ 1 when xd+1 − yd+1 = |x ′ − y ′|2

but not at typical points (x , y) ∈ G 2
p .

The lesson: An obstruction to the trilinear inequality is quadratic
structure (of µp).
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This issue is related to the distinction between uniformity and
Gowers uniformity, which is at the heart of certain advances in
additive combinatorics related to Szemerédi’s theorem,
but is not exactly the same issue.
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First Theorem

Consider linear operator, with ‖gj‖∞ ≤ 1:

Tω,{gj}(f )(x) =
N∑

y=1

rω(x− y)f (x)
M∏

j=1

gj(Lj(x, y)).

Let: Ω = probability space with {sω(x) : x ∈ Z} iid {0, 1}–valued
sω(x) = 1 with probability p
rω(x) = (Np)−1sω(x)− N−1 for integers x ∈ [−N,N]
Thus Eωrω(x) ≡ 0 for x ∈ [−N,N]
while Eω|rω(x)| � N−1.

Theorem

Suppose that M ≥ 1 and 0 ≤ γ < 2−M . There exists ε > 0 such
that for all N ≥ 1 and p = N−γ ,

Eωsup
{gj}
‖Tω,{gj}‖op ≤ CN−ε.
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Same Theorem — A Defect?

Theorem

Suppose that M ≥ 1 and 0 ≤ γ < 2−M . Let p = N−γ . Then

Eω sup
{gj}
‖Tω,{gj}‖op ≤ CN−ε.

The theorem applies only when the matrix
(
sω(x − y)

)
is not too

sparse, in terms of N; e.g. in the trilinear case, our proof requires
that the density of points “selected” be � N−1/2.

I simply do not know whether γ < 2−M is necessary. Method of
proof does break down irretrievably past this threshold.
Could restriction be an artifact of the proof? Today’s results
should be regarded as preliminary.
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An Easier Result

Order of quantifiers matters.

sup
g1,··· ,gM

Eω sup
f
‖Tω(f , g1, · · · , gM)‖2

is a related, but possibly smaller, quantity.

Easier result:

Lω,h(f )(x) =
∑
y

rω(x − y) h(x, y) f (y)

satisfies
Eω‖Lω,h‖op ≤ CεN

ε(Np)−1/2‖h‖`∞

for all ε > 0 provided p ≥ N−γ and γ < 1.

Proof: Expand a high power of L∗ω,hLω,h and take expectation
of its trace.
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Carleson-style maximal analogue

T ∗ω,{gj}(f )(x) = sup
ξ

∣∣∣ N∑
y=1

eiξyrω(x − y)f (x)
M∏

j=1

gj(Lj(x , y))
∣∣∣.

Theorem

Suppose that M ≥ 1, and p = N−γ where 0 ≤ γ < 2−M−1. Then

Eω sup
{gj}
‖T ∗ω,{gj}‖op ≤ CN−ε.
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Application to Ergodic Theory

Let T = invertible measure-preserving transformation on
probability space.
Let sn(ω) = 1 with probability n−γ , and = 0 otherwise.
Random sparse subsequences of N: (nk(ω))k∈N consists of all
n ∈ N for which sn(ω) = 1, listed in increasing order.

Theorem

If 0 ≤ γ < 2−M+1 then for almost every ω ∈ Ω, for all
f1, · · · , fM ∈ L∞(X ),

lim
N→∞

N−1
N∑

k=1

f1(T nk (x))f2(T 2nk (x)) · · · fM(TMnk (x))

exists in L1(X , dµ(x)).
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Another Application to Ergodic Theory

For the full sequence of iterates in the theorem on the
preceding slide, see Tao and Host-Kra, also an alternative
approach of Austin. Theirs is the deep result; the refinement
to subsequences is a comparatively simple add-on.

The Carleson-style maximal analogue has a corresponding
application to an extension of the Return Times theorem
(Bourgain; Demeter-Lacey-Tao-Thiele), replacing averages
over a full sequence of iterates by averages over a sparse
random subsequence of iterates.
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Non-Toeplitz-style Variant

Next: Analogous results for random matrices
(
rω(x , y)

)
x ,y

,

with all entries jointly independent.

Consider jointly independent random selector variables
sω(x , y) for (x , y) ∈ [−N, · · · ,N]2, satisfying sω(x , y) = 1
with probability p, and = 0 otherwise.

Then E(
∑

x sω(x , y)) � Np and E(
∑

y sω(x , y)) � Np.

Define rω(x , y) = (Np)−1
(
sω(x , y)− p) so that

Eωrω(x , y) = 0.
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Non-Toeplitz-style Variant

Consider

Tω,{gj}(f )(x) =
∑
y

rω(x , y)f (y)
M∏

j=1

gj(Lj(x , y)).

As always, ‖gj‖∞ ≤ 1.

Theorem

Let M ≥ 1 and 0 ≤ γ < 1. For N ≥ 1 set p = N−γ . For any
{Lj : 0 ≤ j ≤ M} and any ε > 0,

Eω sup
{gj}
‖Tω‖op ≤ CM,εN

εN−(1−γ)/2.
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Method of Proof

For T (f )(x) =
∑

y rω(x− y)f (y)g(x + y):

‖Tf ‖2`2 =
∑
z∈Z

(∑
x ,y

Fz(x)Gz(x + y)ρω,z(x − y)
)

where Fz(x) = f (x)f (x + z),
Gz(x) = g(x)g(x + z),
ρω,z(x) = rω(x)rω(x + z).

Fix arbitrary z . After linear change of variables, inner sum
represents a linear convolution operator `2 → `2.

Need bound for ρ̂ω,z .
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Issues

Must sacrifice a factor of N1/2 to control ‖Gz‖`2 in terms of
‖g‖`∞ .

ρω,z is a product of two singular measures, hence is even more
singular.

Need bounds for ρ̂ω,z(ξ) =
∑

x rω(x)rω(x + z)e−ixξ.

Independence of summands no longer holds.

ρ̂ω,z is very badly behaved for z = 0. But a bounded number
of exceptional z can be handled by a different (trivial) bound.

If our original measure is too sparse, then the support of
ρω,z may consist of one or zero points for most z . Then there
will be no possible cancellation in the calculation of ρ̂ω,z . The
argument then breaks down utterly.
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Proofs, continued

Higher degrees M of multilinearity are treated by induction.

TT ∗ is applied as above, but repeatedly; each application
reduces M by 1.

Different base case for different M. Linear convolution
operator, with rω(x) replaced by

∏M
j=1 rω(x + zj) for arbitrary

(z1, · · · , zM).

Each iteration leads to a small number of exceptional
parameters z , which must be handled differently.

For large M, the product of M translates of rω is very singular.

Michael Christ, UC Berkeley Inequalities For Random Multilinear Operators



Proof for non-Toeplitz case rω(x , y)

Suppose f , g , h are characteristic functions of sets F ,G ,H.
Fix F ,G ,H.

Our trilinear form is
∑

(x ,y)∈E rω(x , y) where
E = {(x , y) : x ∈ F , y ∈ G , and x + y ∈ H}.
An auxiliary argument reduces matters to the case where
|E| & N2−η for a natural (and small) value of η.

This is a sum of |E| � 1 independent random variables, so is
within a bounded number of standard deviations of its
mean (= 0) with high probability. Its standard deviation is
proportional to

N−1p−1/2|E|1/2 � p−1/2 � N1/2,

while the bound we seek is

N1−ε.
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Entropy

Thus a standard Gaussian distribution would give the
probability of a bad event, for fixed F ,G ,H, to be

. e−cN1+δ

for a certain δ(γ) > 0, if p � N−γ with γ < 1.

Chernoff’s inequality (a generalization of Khinchine’s
inequality) gives hybrid exponential/exponential squared large
deviations bound which suffices for this purpose.

This only applies for (F ,G ,H) fixed. The total number of
such triples is

. eCN .

Therefore the union over all (F ,G ,H) of all bad events has
tiny probability.
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The Return Times Theorem

(Bourgain; Demeter-Lacey-Tao-Thiele)
The return times theorem concerns almost-everywhere existence of
limits

lim
N→∞

N−1
N∑

k=1

f (T k(ω)(x))g(Sk(ω)(y))

where T ,S are unrelated measure-preserving transformations on
two different spaces X ,Y .

The set of good values of x has full measure, and is universal; it
depends on f but works for every dynamical system (Y ,S) and
every g .

The first result of this type was due to Bourgain and applied only to
f , g in certain combinations of Lp spaces.

Demeter-Lacey-Tao-Thiele proved the extension to all f ∈ Lp and
g ∈ Lq with p ∈ (1,∞] and q ≥ 2.
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Application of Carleson-style Operators to Return Times

The case M = 0 has an ergodic-theoretic consequence, for return
times of sparse random subsequences. Let (X ,A,T , µ) be any
nonatomic dynamical system with probability measure µ.

Theorem

Let 0 ≤ γ < 1
2 . Almost every random sequence {nk(ω)}

constructed as above has the this property: Let p ∈ (1,∞] and
q ≥ 2. For each f ∈ Lp(X ) there exists a subset X0 ⊂ X of full
measure such that for every dynamical system (Y ,F , ν, σ), every
g ∈ Lq(Y ), and every x ∈ X0,

lim
N→∞

N−1
N∑

k=1

f (T nk (ω)(x))g(Snk (ω)(y))

exists for ν-almost every y ∈ Y .
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