Inequalities For Random Multilinear Operators

Michael Christ, UC Berkeley

BIRS, July 26, 2010

- Fourier transform and linear structure
- Multilinear operators
- Probability/random structures

Bilinear operators aka trilinear forms

$$
\mathcal{T}_{\omega}(f, g, h)=\sum_{x, y=1}^{N} f(x) g(y) h(x+y) k_{\omega}(x-y)
$$

where k_{ω} is a random probability measure.

One point of view re multilinear operators:
$\mathcal{T}_{\omega}(f, g, h)=$ inner product of $T_{\omega, h} f$ with test function g. Seek worst case (in h) bounds for linear operator $T_{\omega, h}$.

Worst case inequalities comparing $\mathcal{T}_{\omega}(f, g, h)$ to its expected value, for large N - worst h, for typical ω.

A venerable theme: Smallness of Fourier transforms in

 absence of linear structure- If μ is supported on a curved submanifold, then $\widehat{\mu}(\xi)=O\left(|\xi|^{-\rho}\right)$ as $|\xi| \rightarrow \infty$.
- Let $\mu=$ random probability measure on $\mathbb{Z}_{N}, m=$ uniform probability measure. Then $\max _{\xi \neq 0}|\widehat{\mu}(\xi)-\widehat{\mathbf{m}}(\xi)|=\mathbf{O}\left(\mathbf{N}^{-\mathbf{1} / \mathbf{2}} \log (\mathbf{N})\right)$ with high probability.
- Natural Cantor-Lebesgue-type probability measures on random fractal sets have Fourier transforms which tend to zero at a natural rate as $|\xi| \rightarrow \infty$. (e.g. Salem 1951)
- Let $p=$ large prime and $\mu_{p}(x)=1$ if x is a quadratic residue modulo p, and $\mu_{p}(x)=0$ otherwise. Then
$\sup _{\xi \neq 0}\left|\widehat{\mu_{\mathbf{p}}}(\xi)\right| \leq \mathbf{C p}^{-1 / 2}$, whereas $\widehat{\mu}_{p}(0) \asymp 1$.

One More Illustration

Consider random matrix

$$
\left(\begin{array}{ccc}
r_{1,1}(\omega) & \cdots & r_{1, N}(\omega) \\
\vdots & \vdots & \vdots \\
r_{N, 1}(\omega) & \cdots & r_{N, N}(\omega)
\end{array}\right)
$$

with entries which are: $O\left(N^{-1}\right)$, iid, with mean zero.
With high probability as $N \rightarrow \infty$, the ℓ^{2} operator norm is $O\left(\mathbf{N}^{-1 / 2} \cdot N^{\varepsilon}\right)$.

Quantum Interpretation(s)

- Smallness of $\widehat{\mu}$ can be reinterpreted operator-theoretically in terms of $T(f)=f * \mu$, by virtue of Plancherel's theorem; Small Fourier transform \Leftrightarrow small operator norm.
- Goal: Smallness of \mathbb{C}-valued multilinear form

$$
\mathcal{T}_{\omega}\left(f_{1}, \cdots, f_{M}\right)=\sum_{x, y=1}^{N} \mathbf{r}_{\omega}(\mathbf{x}, \mathbf{y}) \prod_{j=1}^{M} f_{j}\left(\mathbf{L}_{\mathbf{j}}(\mathbf{x}, \mathbf{y})\right)
$$

where $L_{j}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ are linear
and $r_{\omega}(x, y)$ are either jointly independent or (Toeplitz case)
$r_{\omega}(x, y) \equiv r_{\omega}^{\varrho}(x-y)$ with $\left\{r_{\omega}^{\varrho}(x)\right\}$ jointly independent.

- We are interested in $\ell^{\mathbf{p}_{\mathbf{1}}} \otimes \ell^{\mathbf{p}_{\mathbf{2}}} \otimes \cdots \otimes \ell^{\mathbf{p}_{\mathbf{M}}}$ bounds with $\sum_{j} p_{j}^{-1}=1$, that is,

$$
\left|\sum_{x, y=1}^{N} r_{\omega}(x, y) \prod_{j=1}^{M} f_{j}\left(L_{j}(x, y)\right)\right| \lesssim \mathbf{N}^{-\rho} \prod_{j}\left\|f_{j}\right\|_{p_{j}}
$$

where r_{ω} has mean zero and $\mathbb{E}\left|r_{\omega}\right| \asymp N^{-1}$.

- These "averaging" type bounds scale naturally for Tauberian-style ergodic-theoretic interpretations.
- The cancellation condition $\mathbb{E}_{\omega}\left(r_{\omega}(x, y)\right)=0$ is essential for smallness of the operator norm.
- Mean zero arises naturally by comparing more general objects to their mean/expected values.

A multilinear inequality in terms of $\ell^{2} \otimes \ell^{2} \otimes \ell^{\infty} \cdots \otimes \ell^{\infty}$ is equivalent to a worst case estimate for a linear operator:

- Modify random matrix

$$
\left(r_{\omega}(x, y)\right)_{x, y=1}^{N}
$$

by multiplying entries by arbitrary

$$
\prod_{k=3}^{M} f_{k}\left(L_{k}(x, y)\right) \text { with }\left\|f_{k}\right\|_{\ell \infty} \leq 1
$$

- We want to bound the largest possible norm.
- If f_{k} were allowed to depend freely on both variables (x, y), then cancellation could be completely destroyed and the best estimate would be $O(1)$.

A Cautionary Example

Let $G_{p}=\mathbb{Z}_{p}^{d} \times \mathbb{Z}_{p} ;\left|x^{\prime}\right|^{2}=\left|\left(x_{1}, \cdots, x_{d}\right)\right|^{2}=\sum_{j=1}^{d} x_{j}^{2}$.
$\mu_{\mathbf{p}}\left(x^{\prime}, x_{d+1}\right)=\left\{\begin{array}{ll}p^{-d} & \text { if } \mathbf{x}_{\mathbf{d}+1}=\left|\mathbf{x}^{\prime}\right|^{2} \\ 0 & \text { otherwise }\end{array}\right.$,
$\nu_{\mathbf{p}}=\mu_{p}-p^{-d-1}$.
Then

$$
\left|\sum_{x, y} f(x) g(y) \nu_{p}(x-y)\right| \lesssim p^{-d / 2}\|f\|_{2}\|g\|_{2} \forall f, g
$$

but there exist f, g, h such that

$$
\left|\sum_{x, y} f(x) g(y) \mathbf{h}(\mathbf{x}+\mathbf{y}) \nu_{\rho}(x-y)\right|=\|f\|_{2}\|g\|_{2}\|h\|_{\infty} ;
$$

there is no cancellation at all.

The counterexample:

$$
\begin{aligned}
& h(x)=e^{2 \pi i\left|x^{\prime}\right|^{2} / p} \\
& f(x)=e^{2 \pi i\left[\mathrm{x}_{\mathrm{d}+1}-2\left|\mathrm{x}^{\prime}\right|^{2}\right] / p} \\
& g(x)=e^{2 \pi i\left[-\mathrm{x}_{\mathrm{d}+1}-2\left|\mathrm{x}^{\prime}\right|^{2}\right] / p} .
\end{aligned}
$$

satisfy

$$
f(x) g(y) h(x+y) \equiv \mathbb{1} \text { when } x_{d+1}-y_{d+1}=\left|x^{\prime}-y^{\prime}\right|^{2}
$$

but not at typical points $(x, y) \in G_{p}^{2}$.

The lesson: An obstruction to the trilinear inequality is quadratic structure (of μ_{p}).

This issue is related to the distinction between uniformity and Gowers uniformity, which is at the heart of certain advances in additive combinatorics related to Szemerédi's theorem, but is not exactly the same issue.

First Theorem

Consider linear operator, with $\left\|\mathbf{g}_{\mathbf{j}}\right\|_{\infty} \leq \mathbf{1}$:

$$
T_{\omega,\left\{g_{j}\right\}}(f)(x)=\sum_{y=1}^{N} r_{\omega}(\mathbf{x}-\mathbf{y}) f(x) \prod_{\mathbf{j}=\mathbf{1}}^{\mathbf{M}} \mathbf{g}_{\mathbf{j}}\left(\mathbf{L}_{\mathbf{j}}(\mathbf{x}, \mathbf{y})\right)
$$

Let: $\Omega=$ probability space with $\left\{s_{\omega}(x): x \in \mathbb{Z}\right\}$ iid $\{0,1\}$-valued $s_{\omega}(x)=1$ with probability p
$r_{\omega}(x)=(N p)^{-1} s_{\omega}(x)-N^{-1}$ for integers $x \in[-N, N]$
Thus $\mathbb{E}_{\omega} r_{\omega}(x) \equiv 0$ for $x \in[-N, N]$ while $\mathbb{E}_{\omega}\left|r_{\omega}(x)\right| \asymp N^{-1}$.

Theorem

Suppose that $M \geq 1$ and $0 \leq \gamma<2^{-M}$. There exists $\varepsilon>0$ such that for all $N \geq 1$ and $p=N^{-\gamma}$,

$$
\underset{\left\{\mathrm{g}_{j}\right\}}{\mathbb{E}_{\omega} \sup \left\|T_{\omega,\left\{g_{j}\right\}}\right\|_{o p} \leq C N^{-\varepsilon} ~}
$$

Same Theorem - A Defect?

Theorem

Suppose that $M \geq 1$ and $0 \leq \gamma<2^{-M}$. Let $p=N^{-\gamma}$. Then

$$
\mathbb{E}_{\omega} \sup _{\left\{g_{j}\right\}}\left\|T_{\omega,\left\{g_{j}\right\}}\right\|_{o p} \leq C N^{-\varepsilon}
$$

The theorem applies only when the matrix $\left(s_{\omega}(x-y)\right)$ is not too sparse, in terms of N; e.g. in the trilinear case, our proof requires that the density of points "selected" be $\gg N^{-1 / 2}$.

I simply do not know whether $\gamma<2^{-M}$ is necessary. Method of proof does break down irretrievably past this threshold. Could restriction be an artifact of the proof? Today's results should be regarded as preliminary.

An Easier Result

- Order of quantifiers matters.

$$
\sup _{g_{1}, \cdots, g_{M}} \mathbb{E}_{\omega} \sup _{f}\left\|T_{\omega}\left(f, g_{1}, \cdots, g_{M}\right)\right\|_{2}
$$

is a related, but possibly smaller, quantity.

- Easier result:

$$
L_{\omega, h}(f)(x)=\sum_{y} r_{\omega}(x-y) \mathbf{h}(\mathbf{x}, \mathbf{y}) f(y)
$$

satisfies

$$
\mathbb{E}_{\omega}\left\|L_{\omega, h}\right\|_{\mathrm{op}} \leq C_{\varepsilon} N^{\varepsilon}(N p)^{-1 / 2}\|h\|_{\ell \infty}
$$

for all $\varepsilon>0$ provided $p \geq N^{-\gamma}$ and $\gamma<1$.

- Proof: Expand a high power of $L_{\omega, h}^{*} L_{\omega, h}$ and take expectation of its trace.

Carleson-style maximal analogue

$$
T_{\omega,\left\{g_{j}\right\}}^{*}(f)(x)=\sup _{\xi}\left|\sum_{y=1}^{N} \mathrm{e}^{\mathrm{i} \xi y} r_{\omega}(x-y) f(x) \prod_{j=1}^{M} g_{j}\left(L_{j}(x, y)\right)\right| .
$$

Theorem

Suppose that $M \geq 1$, and $p=N^{-\gamma}$ where $0 \leq \gamma<2^{-M-1}$. Then

$$
\mathbb{E}_{\omega} \sup _{\left\{g_{j}\right\}}\left\|T_{\omega,\left\{g_{j}\right\}}^{*}\right\|_{o p} \leq C N^{-\varepsilon} .
$$

Application to Ergodic Theory

Let $T=$ invertible measure-preserving transformation on probability space.
Let $s_{n}(\omega)=1$ with probability $n^{-\gamma}$, and $=0$ otherwise. Random sparse subsequences of \mathbb{N} : $\left(n_{k}(\omega)\right)_{k \in \mathbb{N}}$ consists of all $n \in \mathbb{N}$ for which $s_{n}(\omega)=1$, listed in increasing order.

Theorem

If $0 \leq \gamma<2^{-M+1}$ then for almost every $\omega \in \Omega$, for all $f_{1}, \cdots, f_{M} \in L^{\infty}(X)$,

$$
\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N} f_{1}\left(T^{n_{k}}(x)\right) f_{2}\left(T^{2 n_{k}}(x)\right) \cdots f_{M}\left(T^{M n_{k}}(x)\right)
$$

exists in $L^{1}(X, d \mu(x))$.

Another Application to Ergodic Theory

- For the full sequence of iterates in the theorem on the preceding slide, see Tao and Host-Kra, also an alternative approach of Austin. Theirs is the deep result; the refinement to subsequences is a comparatively simple add-on.
- The Carleson-style maximal analogue has a corresponding application to an extension of the Return Times theorem (Bourgain; Demeter-Lacey-Tao-Thiele), replacing averages over a full sequence of iterates by averages over a sparse random subsequence of iterates.

Non-Toeplitz-style Variant

- Next: Analogous results for random matrices $\left(r_{\omega}(x, y)\right)_{x, y}$, with all entries jointly independent.
- Consider jointly independent random selector variables $s_{\omega}(x, y)$ for $(x, y) \in[-N, \cdots, N]^{2}$, satisfying $s_{\omega}(x, y)=1$ with probability p, and $=0$ otherwise.
- Then $\mathbb{E}\left(\sum_{x} s_{\omega}(x, y)\right) \asymp N p$ and $\mathbb{E}\left(\sum_{y} s_{\omega}(x, y)\right) \asymp N p$.
- Define $r_{\omega}(x, y)=(N p)^{-1}\left(s_{\omega}(x, y)-p\right)$ so that $\mathbb{E}_{\omega} r_{\omega}(x, y)=0$.

Non-Toeplitz-style Variant

Consider

$$
T_{\omega,\left\{g_{j}\right\}}(f)(x)=\sum_{y} r_{\omega}(x, y) f(y) \prod_{j=1}^{M} g_{j}\left(L_{j}(x, y)\right)
$$

As always, $\left\|g_{j}\right\|_{\infty} \leq 1$.

Theorem

Let $M \geq 1$ and $0 \leq \gamma<1$. For $N \geq 1$ set $p=N^{-\gamma}$. For any $\left\{L_{j}: 0 \leq j \leq M\right\}$ and any $\varepsilon>0$,

$$
\mathbb{E}_{\omega} \sup _{\left\{g_{j}\right\}}\left\|T_{\omega}\right\|_{o p} \leq C_{M, \varepsilon} N^{\varepsilon} N^{-(1-\gamma) / 2}
$$

Method of Proof

For $T(f)(x)=\sum_{y} r_{\omega}(\mathbf{x}-\mathbf{y}) f(y) g(x+y)$:

$$
\|T f\|_{\ell^{2}}^{2}=\sum_{z \in \mathbb{Z}}\left(\sum_{x, y} F_{z}(x) G_{z}(x+y) \rho_{\omega, z}(x-y)\right)
$$

where $F_{z}(x)=f(x) f(x+z)$,
$G_{z}(x)=g(x) g(x+z)$,
$\rho_{\omega, z}(x)=r_{\omega}(x) r_{\omega}(x+z)$.

- Fix arbitrary z. After linear change of variables, inner sum represents a linear convolution operator $\ell^{2} \rightarrow \ell^{2}$.
- Need bound for $\widehat{\rho_{\omega, z}}$.
- Must sacrifice a factor of $N^{1 / 2}$ to control $\left\|G_{z}\right\|_{\ell^{2}}$ in terms of $\|g\|_{\ell \infty}$.
- $\rho_{\omega, z}$ is a product of two singular measures, hence is even more singular.
- Need bounds for $\widehat{\rho_{\omega, z}}(\xi)=\sum_{x} r_{\omega}(x) r_{\omega}(x+z) e^{-i x \xi}$.
- Independence of summands no longer holds.
- $\widehat{\rho_{\omega, z}}$ is very badly behaved for $z=0$. But a bounded number of exceptional z can be handled by a different (trivial) bound.
- If our original measure is too sparse, then the support of $\rho_{\omega, z}$ may consist of one or zero points for most z. Then there will be no possible cancellation in the calculation of $\widehat{\rho_{\omega, z}}$. The argument then breaks down utterly.

Proofs, continued

- Higher degrees M of multilinearity are treated by induction.
- $T T^{*}$ is applied as above, but repeatedly; each application reduces M by 1 .
- Different base case for different M. Linear convolution operator, with $r_{\omega}(x)$ replaced by $\prod_{j=1}^{M} r_{\omega}\left(x+z_{j}\right)$ for arbitrary $\left(z_{1}, \cdots, z_{M}\right)$.
- Each iteration leads to a small number of exceptional parameters z, which must be handled differently.
- For large M, the product of M translates of r_{ω} is very singular.

Proof for non-Toeplitz case $r_{\omega}(x, y)$

- Suppose f, g, h are characteristic functions of sets F, G, H. Fix F, G, H.
- Our trilinear form is $\sum_{(x, y) \in \mathcal{E}} r_{\omega}(x, y)$ where $\mathcal{E}=\{(x, y): x \in F, y \in G$, and $x+y \in H\}$.
- An auxiliary argument reduces matters to the case where $|\mathcal{E}| \gtrsim N^{2-\eta}$ for a natural (and small) value of η.
- This is a sum of $|\mathcal{E}| \gg 1$ independent random variables, so is within a bounded number of standard deviations of its mean ($=0$) with high probability. Its standard deviation is proportional to

$$
N^{-1} p^{-1 / 2}|\mathcal{E}|^{1 / 2} \asymp p^{-1 / 2} \ll N^{1 / 2}
$$

while the bound we seek is

$$
N^{1-\varepsilon} .
$$

Entropy

- Thus a standard Gaussian distribution would give the probability of a bad event, for fixed F, G, H, to be

$$
\lesssim e^{-c N^{1+\delta}}
$$

for a certain $\delta(\gamma)>0$, if $p \asymp N^{-\gamma}$ with $\gamma<1$.

- Chernoff's inequality (a generalization of Khinchine's inequality) gives hybrid exponential/exponential squared large deviations bound which suffices for this purpose.
- This only applies for (F, G, H) fixed. The total number of such triples is

$$
\lesssim e^{C N}
$$

Therefore the union over all (F, G, H) of all bad events has tiny probability.

The Return Times Theorem

(Bourgain; Demeter-Lacey-Tao-Thiele)
The return times theorem concerns almost-everywhere existence of limits

$$
\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N} f\left(T^{k(\omega)}(x)\right) g\left(S^{k(\omega)}(y)\right)
$$

where T, S are unrelated measure-preserving transformations on two different spaces X, Y.

- The set of good values of x has full measure, and is universal; it depends on f but works for every dynamical system (Y, S) and every g.
- The first result of this type was due to Bourgain and applied only to f, g in certain combinations of L^{p} spaces.
- Demeter-Lacey-Tao-Thiele proved the extension to all $f \in L^{p}$ and $g \in L^{q}$ with $p \in(1, \infty]$ and $q \geq 2$.

Application of Carleson-style Operators to Return Times

The case $M=0$ has an ergodic-theoretic consequence, for return times of sparse random subsequences. Let (X, \mathcal{A}, T, μ) be any nonatomic dynamical system with probability measure μ.

Theorem

Let $0 \leq \gamma<\frac{1}{2}$. Almost every random sequence $\left\{n_{k}(\omega)\right\}$ constructed as above has the this property: Let $p \in(1, \infty]$ and $q \geq 2$. For each $f \in L^{p}(X)$ there exists a subset $X_{0} \subset X$ of full measure such that for every dynamical system $(Y, \mathcal{F}, \nu, \sigma)$, every $g \in L^{q}(Y)$, and every $x \in X_{0}$,

$$
\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N} f\left(T^{n_{k}(\omega)}(x)\right) g\left(S^{n_{k}(\omega)}(y)\right)
$$

exists for ν-almost every $y \in Y$.

