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A spherical Whittaker function on G is an element
W e C*(U,y\G/K), which is a Hk(G)-eigenfunction.

In other words:

1. foruec U, g€ G, ke K,

W (ugk) = ¢(u) W(g)
2. Jy € (C*)" such that

/Gf(x)W(gx) dx = ?(y) W(g), feHx(G), geG.



Spherical Whittaker functions can be constructed using the

representation theory of G.



Spherical Whittaker functions can be constructed using the
representation theory of G.

Let (, V) be an irreducible representation of G.



Spherical Whittaker functions can be constructed using the

representation theory of G.

Let (m, V) be an irreducible representation of G. Let
VK ={veV:n(kiv=v, ke K}

be the space of spherical vectors of 7



Spherical Whittaker functions can be constructed using the
representation theory of G.

Let (m, V) be an irreducible representation of G. Let
VK ={veV:n(kiv=v, ke K}
be the space of spherical vectors of 7 and let
(VHYY = {0 e V*  U(m(u)v) = ¥(u)v, ue U}

be the space of Whittaker functionals on .



Spherical Whittaker functions can be constructed using the
representation theory of G.

Let (m, V) be an irreducible representation of G. Let
VK ={veV:n(kiv=v, ke K}
be the space of spherical vectors of 7 and let
(VHYY = {0 e V*  U(m(u)v) = ¥(u)v, ue U}

be the space of Whittaker functionals on .

For ve VK and ¢ € (V¥)U¥



Spherical Whittaker functions can be constructed using the
representation theory of G.

Let (m, V) be an irreducible representation of G. Let
VK ={veV:n(kiv=v, ke K}
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Earlier, Shintani (1976) obtained the formula for %Zkyg)
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Goals

1. Obtain a formula for spherical Whittaker functions for the
n-fold metaplectic cover of G.

2. ldentify metaplectic spherical Whittaker functions as p-parts
of the Fourier coefficients of Eisenstein series on the

metaplectic group.

Main obstacle: There is NO multiplicity one of Whittaker
functionals.

Yumiko Hironaka applied the Casselman-Shalika method to
compute spherical functions in a case where multiplicity one fails.

(on a p-adic space of Hermitian matrices).
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Let u, be the group of nth roots of unity in F.
Assume from now on that |u,| = n and that |n|F = 1.
Fix ¢ € Z/n’Z. Kazhdan-Patterson associated the c-twisted n-fold

metaplectic covering G of G. It is a central extension

1—pup—G—G—1.

The groups U, K split in G and we may consider them as
subgroups of G. (we may choose a splitting of K that agrees on

U N K with the canonical splitting of U.)
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Let X denote the pre-image in G of a subset X in G.
Then, A is not abelian! Let A, be the subgroup of A such that A,

is the “standard” maximal abelian subgroup of A. Let
L={f=(1,...,f) € (MZ) :fi—fiz1 =0 modn,i=1,...,r—1}

where m = Then w! € A, iff f € L. In fact

gcd(n,2?c+r—1)
A, = (AN K)wk. Also

\AJA,| = |Z7/C] = n""tm.

Let B, = A.U. For y € (C*)" we can associate a genuine spherical
character x, of B, and define the genuine spherical principal series

representation /(y) = Indg (xy)-
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We again have multiplicity one of spherical vectors:
dimI(y)K =1

and we denote by ¢k the normalized spherical vector.

For every a € A we can define a Jacquet integral on /(y) by

Qu(p:y) = /U o(awou) B(u) d

For a, € A, the Whittaker functionals Q,..(y) and Q, are
proportional.

For y in general position {Q,(y): a € A/A.} is a basis of the
space /(y)U.



The functional equations



The functional equations

For we S, let Ty, : I(y) — I(wy) be the intertwining operator

defined by the meromorphic continuation of the integral

Twp(x) :/ o(wtux) du.



The functional equations

For we S, let Ty, : I(y) — I(wy) be the intertwining operator

defined by the meromorphic continuation of the integral

Twp(x) :/ o(wtux) du.
There are coefficients 7, 5, such that

Qa(wy)o Ty =



The functional equations

For we S, let Ty, : I(y) — I(wy) be the intertwining operator

defined by the meromorphic continuation of the integral

Twp(x) :/ o(wtux) du.

There are coefficients 7, 5, such that

Qa(wy)o Ty = Z Ta,b(W7Y) Qp(y)
beA/A,



The functional equations

For we S, let Ty, : I(y) — I(wy) be the intertwining operator

defined by the meromorphic continuation of the integral

Twp(x) :/ o(wtux) du.

There are coefficients 7, 5, such that

Qa(wy)o Ty = Z Ta,b(W7)/) Qp(y)
beA/A,

The coefficients were computed explicitly by K-P.
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The coefficients satisfy the co-cycle condition

vy
Ta,b(any) = WV(C)

Ol 2 el )es(v.)

ceA/A.

for viw € S, where

1—q My )"
cw(y) = H _i .
i<j 1- (ylyj )
w(i)>w(j)

They are also equivariant in a and b,

Ta*a,b*b(Wa)/) = 5‘1,3,/2(3*b*_l)wa(a*)Xy(b*)_lTa,b(W7}/)

for a., b, € A..
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Let w; € S, be the ith simple reflection and let f, f € Z". Then

wawa/(w,-,y) = T;f,wf/(w,-,y) + T;fwf/(w,-,y),

fi—fi
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72 (Wi y) = (o, W)EferquiJrl_fi—Zg(fi i d1) f-wlflec
ol ol 0 ] ¢~

where W,'[ﬂ = (fl, v fict Fier — L i+ 1, figo, - - ,f,), (~, ‘)n is the

nth order Hilbert symbol on F, and g(m) is the Gauss sum given by

gm= > (u,@M)mh(w ).

ueOf /1+pr
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Spherical Whittaker functions on G

A basis of Whittaker functions with a fixed Hecke eigenvalue

parameterized by y € C" is given by {W,(y) : a € A/A,} where

Wa(g :y) = Q(l(g,y)ek : y)

By the lwasawa decomposition G = UAK it is enough to evaluate
the spherical Whittaker functions on A. Also W,(b : y) = 0 unless
be A

Theorem (Chinta-O)

Forac A be A= let bt = ng_lw(;l. We have

. s CWo(Wil)/)T w W—l
Wa(b : Y) - 5B(b) v;f CW(W_ly) a,bﬁ( ) Y)'
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The Chinta-Gunnells action-a reinterpretation

For every ¢ € Z'~! Chinta and Gunnells defined an action le.cc on

a (localized) algebra of polynomials in r — 1 variables x1, ..., x,—1.

Using the change of variables x; = q}f”' this family of actions can

i+1

be unified to a single action, that we denote by |cg on A. In terms
of this action, the p-part of the WMDS of type A,_1 constructed
by Chinta-Gunnells and associated to a parameter

0= (h,...,I,)eZ1is

N(y,\) =y culy) D j(w,y)(milce w)(y)
weSs,

where A= (0, b, b+ 3y, b4+ 1), j(w,y) = 29 and
e(y) = Hi<j(1 = (i/yi)")-
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For P € A and w € S5, we have

Jwsy)(Ple w)(y) = C;”Vf(”;y))mp w)(y).

Theorem (Chinta-O)

For A\1 < --- < A\, we have

W (wy twtwo : y) = ¢y N(y, \).
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Concluding remarks 17

The WMDS of type A,_1 constructed by Brubaker, Bump and
Friedberg is the Whittaker-Fourier coefficient of an Eisenstein
series on G.

The p-part of this WMDS was related to a Spherical Whittaker
function by McNamara.

The two independent computations of the spherical whittaker

functions serve as a bridge between the constructions of BBF and

of CG.
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The Casselman-Shalika method with multiplicities

Want to compute W,(b:y) = Q.(/(g,y)ek 1Y)

Step 1: Expand ¢k along a ‘well chosen’ basis of /(y)% where Z is
the lwahori subgroup.

Step 2: Compute a single term in the corresponding expansion of
Wa(y).

Step 3: Apply the KP functional equations to obtain the other

terms.
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Let ¢, € I(y)? be the unique element with support B.woT

normalized by ¢, (wp) = 1.
Lemma

1. The set {Twg,-1, : w € W} is a basis of I(y)* (for y in
general position).

> cwg (W ly)

2. PK = 2 wes, oy wTy) [wPwly-

Corollary
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Step 2: computation of the term for w = e

Recall that b* = wob 1wyg.

Lemma

05(b) (5:°xy)(a(b))™Y) be A and A.a = A, bt

0 otherwise

Qa(/(b’y)so}’) = {
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Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

Wi(b:y) =) W Qa(y) o Tw(I(b, W™ y) @y -1,).
wes, %

By the functional equations of KP this equals

Z Cwo(W_ly) Z (W w1l )Q (/(b w1 ) w1l )
CW(W_]' Ta,c ) y c ) y (pw_ly . y

wesS, ceA/A,

Now each summand over c is of the form computed in Step 2. By

Step 2, only ¢ € b?A, contributes and finally we get our Theorem

Cwo (W™ ty) _
Wa(b . y) = Z WTaiﬂj(W, w ly)
wes, W Y



