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Let G = GLr (F ) and K = GLr (OF ).



Setting

Let F be a non-archimedean local field,

OF the ring of integers of F .

(e.g. F = Qp, OF = Zp or F = Fq((t)), OF = Fq[[t]].)

Let G = GLr (F ) and K = GLr (OF ).



Setting

Let F be a non-archimedean local field,

OF the ring of integers of F .

(e.g. F = Qp, OF = Zp or F = Fq((t)), OF = Fq[[t]].)

Let G = GLr (F ) and K = GLr (OF ).



Setting

Let F be a non-archimedean local field,

OF the ring of integers of F .

(e.g. F = Qp, OF = Zp or F = Fq((t)), OF = Fq[[t]].)

Let G = GLr (F ) and K = GLr (OF ).



Setting

Let F be a non-archimedean local field,

OF the ring of integers of F .

(e.g. F = Qp, OF = Zp or F = Fq((t)), OF = Fq[[t]].)

Let G = GLr (F ) and K = GLr (OF ).



The spherical Hecke algebra HK (G ) := C∞c (K\G/K )

(commutative algebra w.r.t convolution)

Characters of HK (G ) are parameterized by (C∗)r/Sr

for y ∈ (C∗)r we denote by f 7→ f̂ (y) the associated character.

HK (G ) acts on C∞(G ) by convolution

f ∗ φ(g) =

∫
G

f (x)φ(gx) dx , f ∈ HK (G ), φ ∈ C∞(G ), g ∈ G .
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ψ0-a character of F with conductor OF .

U-the subgroup of upper triangular unipotent matrices in G

and ψ the generic character on U defined by

ψ(u) = ψ0(u1,2 + · · ·+ ur−1,r ), u ∈ U.
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A spherical Whittaker function on G is an element

W ∈ C∞(U, ψ\G/K ), which is a HK (G )-eigenfunction.

In other words:

1. for u ∈ U, g ∈ G , k ∈ K ,

W (ugk) = ψ(u) W (g)

2. ∃y ∈ (C∗)r such that

∫
G

f (x)W (gx) dx = f̂ (y) W (g), f ∈ HK (G ), g ∈ G .
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Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G . Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G .

Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G . Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π

and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G . Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G . Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Spherical Whittaker functions can be constructed using the

representation theory of G .

Let (π,V ) be an irreducible representation of G . Let

V K = {v ∈ V : π(k)v = v , k ∈ K}

be the space of spherical vectors of π and let

(V ∗)U,ψ = {` ∈ V ∗ : `(π(u)v) = ψ(u)v , u ∈ U}

be the space of Whittaker functionals on π.

For v ∈ V K and ` ∈ (V ∗)U,ψ

W (g) := `(π(g)v)

is a spherical Whittaker function.



Multiplicity one of Whittaker functionals

For every irreducible representation (π,V ) of G we have

dim(V ∗)U,ψ ≤ 1.
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The spherical principal series

Let A be the subgroup of diagonal matrices in G and let B = AU.

For y ∈ (C∗)r let χy be the spherical character of B defined by

χy (diag(a1, . . . , ar )u) =
r∏

i=1

y
valF (ai )
i .

I (y) = {ϕ : G → C | ϕ(bg) = (δ
1
2
Bχy )(b)ϕ(g)}

is the associated spherical principal series representation. Then

dim I (y)K = 1 (i.e. I (y) is indeed spherical)

and ∃! ϕK ∈ I (y)K such that ϕK (e) = 1.

Every irreducible spherical representation of G is the unique

spherical irreducible sub-quotient of I (y) for some y ∈ (C∗)r .
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The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr

and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The Whittaker functional on the spherical principal series

Let w0 be the long Weyl element of G

w0 =

 1

. .
.

1



For ϕ ∈ I (y) the Jacquet integral

Ω(ϕ : y) =

∫
U
ϕ(w0u) ψ̄(u) du

converges when Re y1 � Re y2 � · · · � Re yr and admits a

holomorphic continuation to (C∗)r .

Ω(y) is a non-zero Whittaker functional on I (y)

(in particular, I (y) is generic).



The spherical Whittaker functions

Using the recipe W (g) = `(π(g)v) we construct a spherical
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W (g : y) = Ω(I (g , y)ϕK : y).
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Let $ ∈ F be a uniformizer, q = |$|−1
F =size of residual field.

For λ = (λ1, . . . , λr ) ∈ Zr let

$λ = diag($λ1 , . . . , $λr ).

By the Iwasawa decomposition

G = ∪λ∈Zr U$λK .

Therefore W (y) is determined by its values W ($λ : y).

Furthermore

W ($λ : y) = 0 unless λ1 ≥ · · · ≥ λr .
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The Casselman-Shalika formula (1980)

Let λ = (λ1, . . . , λr ) ∈ Zr be such that λ1 ≥ λ2 ≥ · · · ≥ λr then

W ($λ : y) = q−ρ·λ

 ∏
1≤i<j≤r

(1− q−1yiy
−1
j )

 sλ(y)

where sλ is the Schur symmetric polynomial

sλ(y) =

det

 yλ1
1 yλ1

2 · · · yλ1
r

...
...

...

yλr
1 yλr

2 · · · yλr
r


∏

i<j(yi − yj)
= ξλ(y).

and

ρ = (
r − 1

2
,
r − 3

2
, . . . ,

1− r

2
).

Earlier, Shintani (1976) obtained the formula for W ($λ:y)
W (e:y) .
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where sλ is the Schur symmetric polynomial

sλ(y) =

det
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1 yλ1
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r

...
...

...
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r


∏

i<j(yi − yj)
= ξλ(y).

and

ρ = (
r − 1

2
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r − 3

2
, . . . ,

1− r

2
).

Earlier, Shintani (1976) obtained the formula for W ($λ:y)
W (e:y) .
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Goals

1. Obtain a formula for spherical Whittaker functions for the

n-fold metaplectic cover of G .

2. Identify metaplectic spherical Whittaker functions as p-parts

of the Fourier coefficients of Eisenstein series on the

metaplectic group.

Main obstacle: There is NO multiplicity one of Whittaker

functionals.

Yumiko Hironaka applied the Casselman-Shalika method to

compute spherical functions in a case where multiplicity one fails.

(on a p-adic space of Hermitian matrices).
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The metaplectic n-fold covering of G

Let µn be the group of nth roots of unity in F .

Assume from now on that |µn| = n and that |n|F = 1.

Fix c ∈ Z/nZ. Kazhdan-Patterson associated the c-twisted n-fold

metaplectic covering G̃ of G . It is a central extension

1→ µn → G̃ → G → 1.

The groups U, K split in G̃ and we may consider them as

subgroups of G̃ . (we may choose a splitting of K that agrees on

U ∩ K with the canonical splitting of U.)
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A function f on G̃ with values in a complex vector space is called

genuine if

f (ζg) = ζf (g), ζ ∈ µn, g ∈ G̃ .

We will consider genuine spherical Whittaker functions, i.e.

elements of C (U, ψ\G̃/K )genuine that are common eigenfunctions

of the genuine spherical Hecke algebra HK (G̃ )genuine.
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The spherical principal series of G̃ (Kazhdan-Patterson)

Let X̃ denote the pre-image in G̃ of a subset X in G .

Then, Ã is not abelian! Let A∗ be the subgroup of A such that Ã∗

is the “standard” maximal abelian subgroup of Ã. Let

L = {f = (f1, . . . , fr ) ∈ (mZ)r : fi−fi+1 ≡ 0 mod n, i = 1, . . . , r−1}

where m = n
gcd(n,2rc+r−1) .Then $f ∈ A∗ iff f ∈ L. In fact

A∗ = (A ∩ K )$L. Also

|Ã/Ã∗| = |Zr/L| = nr−1m.

Let B∗ = A∗U. For y ∈ (C∗)r we can associate a genuine spherical

character χy of B̃∗ and define the genuine spherical principal series

representation I (y) = IndG̃
B̃∗

(χy ).
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Then, Ã is not abelian! Let A∗ be the subgroup of A such that Ã∗
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Then, Ã is not abelian! Let A∗ be the subgroup of A such that Ã∗
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is the “standard” maximal abelian subgroup of Ã. Let

L = {f = (f1, . . . , fr ) ∈ (mZ)r : fi−fi+1 ≡ 0 mod n, i = 1, . . . , r−1}

where m = n
gcd(n,2rc+r−1) .Then $f ∈ A∗ iff f ∈ L. In fact

A∗ = (A ∩ K )$L. Also
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We again have multiplicity one of spherical vectors:

dim I (y)K = 1

and we denote by ϕK the normalized spherical vector.

For every a ∈ Ã we can define a Jacquet integral on I (y) by

Ωa(ϕ : y) =

∫
U
ϕ(aw0u) ψ̄(u) du.

For a∗ ∈ Ã∗ the Whittaker functionals Ωa∗a(y) and Ωa are

proportional.

For y in general position {Ωa(y) : a ∈ Ã/Ã∗} is a basis of the

space I (y)U,ψ.
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For a∗ ∈ Ã∗ the Whittaker functionals Ωa∗a(y) and Ωa are

proportional.

For y in general position {Ωa(y) : a ∈ Ã/Ã∗} is a basis of the
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The functional equations

For w ∈ Sr let Tw : I (y)→ I (wy) be the intertwining operator

defined by the meromorphic continuation of the integral

Twϕ(x) =

∫
Uw

ϕ(w−1ux) du.

There are coefficients τa,b such that

Ωa(wy) ◦ Tw =
∑

b∈Ã/Ã∗

τa,b(w , y) Ωb(y)

The coefficients were computed explicitly by K-P.
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Proposition (Kazhdan-Patterson)

Let wi ∈ Sr be the ith simple reflection and let f, f′ ∈ Zr . Then

τ$f,$f′ (wi , y) = τ1
$f,$f′ (wi , y) + τ2

$f,$f′ (wi , y),

τ1
$f,$f′ (wi , y) =

(1− q−1) (yi+1/yi )
nb

fi−fi+1
n c

1−(yi/yi+1)n
f− f′ ∈ L

0 f− f′ 6∈ L

τ2
$f,$f′ (wi , y) =

{
($,$)

fi fi+1
n qfi+1−fi−2g(fi − fi+1 + 1) f− wi [f

′] ∈ L
0 f− wi [f

′] 6∈ L
where wi [f] = (f1, . . . , fi−1, fi+1− 1, fi + 1, fi+2, . . . , fr ), (·, ·)n is the

nth order Hilbert symbol on F , and g(m) is the Gauss sum given by

g(m) =
∑

u∈O×F /1+pF

(u, $m)nψ($−1u).
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Spherical Whittaker functions on G̃

A basis of Whittaker functions with a fixed Hecke eigenvalue

parameterized by y ∈ Cr is given by {Wa(y) : a ∈ Ã/Ã∗} where

Wa(g : y) = Ωa(I (g , y)ϕK : y).

By the Iwasawa decomposition G̃ = UÃK it is enough to evaluate

the spherical Whittaker functions on Ã. Also Wa(b : y) = 0 unless

b ∈ Ã−.

Theorem (Chinta-O)

For a ∈ Ã, b ∈ Ã− let b] = w0b
−1w−1

0 . We have

Wa(b : y) = δB̃(b)
∑
w∈Sr

cw0(w−1y)

cw (w−1y)
τa,b](w ,w

−1y).
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Preparation for comparison

Assume from now on that |µ2n(F )| = 2n. Let A be the

localization of the algebra C[y±1
1 , . . . , y±1

r ] by the set

{1− qε(yi/yj)
n : ε = −1, 0, 1, 1 ≤ i < j ≤ r}

For f ∈ Zr let mf(y) = y f = y f1
1 · · · y

fr
r . Recall that f ∈ L iff

$f ∈ A∗. Let A∗ be the subalgebra of A generated by the

monomials mf, f ∈ L. We have a decomposition

A = ⊕λ∈Zr/LA∗m−λ.

Let Pλ denote the λ-component of P ∈ A.
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For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A. Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A. Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A.

Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A. Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A. Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



For P ∈ A, w ∈W let

(P|KP w)(y) =
∑

λ, µ∈Zr/L

τ̃$−λ,$−µ(w , y)Pµ(wy).

where

τ̃$−λ,$−µ(w , y) = qρ·(µ−λ)mλ(wy)m−µ(y)τ$−λ,$−µ(w , y).

|KP is an action of Sr on A. Let

W ◦(g : y) =
∑

λ∈Zr/L

q−ρ·λyλ W$−λ(g : y).

If λ1 ≤ · · · ≤ λr then

W ◦(w−1
0 $λw0; y) = qρ·λ

∑
w∈W

cw0(wy)(mλ|KP w)(y).



The Chinta-Gunnells action-a reinterpretation

For every ` ∈ Zr−1 Chinta and Gunnells defined an action |`,CG on

a (localized) algebra of polynomials in r − 1 variables x1, . . . , xr−1.

Using the change of variables xi = yi
qyi+1

this family of actions can

be unified to a single action, that we denote by |CG on A. In terms

of this action, the p-part of the WMDS of type Ar−1 constructed

by Chinta-Gunnells and associated to a parameter

` = (l2, . . . , lr ) ∈ Zr−1 is
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For P ∈ A and w ∈ Sr we have

j(w , y)(P|CG w)(y) =
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Concluding remarks !?

The WMDS of type Ar−1 constructed by Brubaker, Bump and

Friedberg is the Whittaker-Fourier coefficient of an Eisenstein

series on G̃ .

The p-part of this WMDS was related to a Spherical Whittaker

function by McNamara.

The two independent computations of the spherical whittaker

functions serve as a bridge between the constructions of BBF and

of CG .
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The Casselman-Shalika method with multiplicities

Want to compute Wa(b : y) = Ωa(I (g , y)ϕK : y).

Step 1: Expand ϕK along a ‘well chosen’ basis of I (y)I where I is

the Iwahori subgroup.

Step 2: Compute a single term in the corresponding expansion of

Wa(y).

Step 3: Apply the KP functional equations to obtain the other

terms.
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Step 1: The Casselman basis

Let ϕy ∈ I (y)I be the unique element with support B̃∗w0I

normalized by ϕy (w0) = 1.

Lemma

1. The set {Twϕw−1y : w ∈W } is a basis of I (y)I (for y in

general position).

2. ϕK =
∑

w∈Sr

cw0 (w−1y)

cw (w−1y)
Twϕw−1y .

Corollary

Wa(b : y) =
∑
w∈Sr

cw0(w−1y)

cw (w−1y)
Ωa(I (b, y)Twϕw−1y ).
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Step 2: computation of the term for w = e

Recall that b] = w0b
−1w0.

Lemma

Ωa(I (b, y)ϕy ) =

{
δB̃(b) (δ

1/2

B̃
χy )(a(b])−1) b ∈ Ã− and Ã∗a = Ã∗b

]

0 otherwise
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Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

Wa(b : y) =
∑
w∈Sr

cw0(w−1y)

cw (w−1y)
Ωa(y) ◦ Tw (I (b,w−1y)ϕw−1y ).

By the functional equations of KP this equals

∑
w∈Sr

cw0(w−1y)

cw (w−1y)

∑
c∈Ã/Ã∗

τa,c(w ,w−1y)Ωc(I (b,w−1y)ϕw−1y : w−1y)

Now each summand over c is of the form computed in Step 2. By

Step 2, only c ∈ b]Ã∗ contributes and finally we get our Theorem

Wa(b : y) =
∑
w∈Sr

cw0(w−1y)

cw (w−1y)
τa,b](w ,w

−1y).
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