Descartes’ rule of signs.

Martín Avendaño

March 2, 2010
1 Introduction.

2 Descartes’ rule of signs is exact!

3 Some questions.
Descartes’ rule of signs is easy.

Let \(f = \sum_{i=0}^{d} a_i x^i \in \mathbb{R}[x] \) be a non-zero polynomial of degree \(d \).

- \(R(f) \) is the number of positive roots of \(f \) counted with multiplicities.
- \(S(f) \) is the number of changes of signs in the sequence of coefficients of \(f \), ignoring the zeros.

Theorem (Descartes (1637) - Gauss (1828))

\(R(f) \leq S(f) \) and \(S(f) - R(f) \) is even.
Descartes’ rule of signs is correct.

Proven by Gauss (1828), Albert (1943), Wang (2004), ...

The proofs are based on:

Lemma

\[S((x - 1)f(x)) \geq S(f) + 1. \]

Lemma

- \(a_0a_d > 0 \implies \) \(S(f) \) and \(R(f) \) are both even.
- \(a_0a_d < 0 \implies \) \(S(f) \) and \(R(f) \) are both odd.
Descartes’ rule of signs is sharp.

- If \(f = (x - r_1) \cdots (x - r_n) \in \mathbb{R}[x] \) where \(r_i > 0 \ \forall \ i \), then
 \[S(f) = R(f) = n. \]

- [Grabiner (1999)] For any sequence of signs (no zeros), there exists a non-zero \(f \in \mathbb{R}[x] \) with coefficients of the given signs and \(S(f) = R(f) \).
Descartes’ rule of signs is inexact.

- If \(f = x^2 + bx + c \in \mathbb{R}[x] \) where \(b < 0 \) and \(c > b^2/4 \), then \(S(f) = 2 \) and \(R(f) = 0 \).
- \([\text{Anderson, Jackson, Sitharam (1998)}]\) For any sequence of signs or zeros with \(n \) changes of signs and an even integer \(k \) such that \(0 \leq k \leq n \), there exists a non-zero \(f \in \mathbb{R}[x] \) with coefficients of the given signs and \(R(f) = n - k \).
Descartes’ rule of signs is almost exact.

- [Poincare (1888)] There exists $g \in \mathbb{R}[x]$, that depends on f, such that $R(f) = S(fg)$.

- [Polya (1928)] If f has no positive roots, then there exists $n \in \mathbb{N}_0$ such that $S((x + 1)^nf(x)) = 0$.

- [Powers, Reznick (2007)] If f has no positive roots and

$$n > \left(\binom{d}{2} \right) \frac{\max_{0 \leq i \leq d} \left\{ \frac{a_i}{\binom{d}{i}} \right\}}{\min_{\lambda \in [0,1]} \{(1 - \lambda)^d f \left(\frac{\lambda}{1-\lambda} \right) \}} - d$$

then $S((x + 1)^nf(x)) = 0$.
Descartes’ rule of signs is exact!

Theorem (Avendano (2009))

For any non-zero \(f \in \mathbb{R}[x] \), the sequence \(S((x + 1)^n f(x)) \) is monotone decreasing and it stabilizes at \(R(f) \).
Recall that \(f = a_dx^d + \cdots + a_1x + a_0 \).

Then \((x + 1)^nf(x) = c_n^{n+d}x^{n+d} + \cdots + c_n^1x + c_n^0 \) where

\[
 c_n^k = \sum_{i=0}^d a_i \binom{n}{k-i}.
\]

Encode the (signs of the) coefficients \(c_n^k \) in the piecewise constant functions \(g_n : [0, 1) \rightarrow \mathbb{R} \) given by

\[
 g_n(\lambda) = \left(\frac{n+d}{[\lambda(n+d+1)]} \right)^{-1} c_n^{[\lambda(n+d+1)]}.
\]

\[
 \text{sgn}(c_n^k) = \text{sgn}(g_n(k/(n+d+1))).
\]
Example 1

Consider the polynomial

\[f = (x - 2)(x - 7)(9x^6 - x^5 + 2x^4 - 4x^3 + 2x^2 + 4x + 1) \]

\[= 9x^8 - 82x^7 + 137x^6 - 36x^5 + 66x^4 - 70x^3 - 7x^2 + 47x + 14. \]

Figure: Functions \(g_0(\lambda), g_1(\lambda) \) and \(g_5(\lambda) \) compared with \(g(\lambda) \).
Figure: Functions $g_{10}(\lambda)$, $g_{25}(\lambda)$ and $g_{100}(\lambda)$ compared with $g(\lambda)$.
Show that the sequence of functions \(\{g_n\}_{n \geq 0} \) converge uniformly to

\[
g(\lambda) = (1 - \lambda)^d f \left(\frac{\lambda}{1 - \lambda} \right)
\]

in the interval \([0, 1)\).

Note that the homography \(\lambda \mapsto \frac{\lambda}{1 - \lambda} \) is a bijection from \([0, 1)\) to \([0, \infty)\). Its inverse is given by \(x \mapsto \frac{x}{x + 1} \).

For large enough \(n \), the number of sign alternations in \(c_n^k \) is equal to the number of changes of signs of \(g(\lambda) \), i.e. the number of positive roots of \(f \).
What else?

- The n required to get $S((x + 1)^nf) = R(f)$ is usually (very) large. An analysis of the optimal n is in progress.
- Can we change $x + 1$ by some other polynomial?
- For large enough n, the coefficients of $(x + 1)^nf(x)$ and the values of f, after some normalization, almost coincide. Can we use this for finding roots?
- The proof uses that a Binomial probability distribution can be approximated well by a Poisson distribution. Also, we are multiplying by powers of $(x + 1)$. Is this technique related with random walks?
What is a Descartes’ rule of signs?

Let \mathcal{M} be the set of sequences of real numbers indexed by the non-negative integers, with finite support. We use this sequences to encode the coefficients of polynomials in $\mathbb{R}[x]$.

Consider a function $\hat{S} : \mathcal{M} \rightarrow \mathbb{N}_0$ such that:

1. $\hat{S}(\square \ast a) \leq \hat{S}(a)$
2. $\hat{S}(a) \geq \text{"positive regions in } a\text{"} + \text{"negative regions in } a\text{"} - 1$

for all $a \in \mathcal{M}$. Then \hat{S} is a DRS, i.e. $R(f) \leq \hat{S}(f)$ for all $f \in \mathbb{R}[x]$.

Here \ast denotes convolution of sequences (or multiplication of polynomials) and \square corresponds to the binomial $1 + x$.

Martín Avendaño

Descartes’ rule of signs.
Is there any other Descartes’ rule of signs?

Yes, sure!

Define \(\hat{S}(a) \) as the number of times the sequence changes from \(+\) to \(−\) plus twice the number of changes from \(−\) to \(+\). This gives a DRS.

Want more?

For any sequence \(a \in M \) define \(\hat{a} \in M \) by

\[
\hat{a}_n = \sum_{i=n}^{\infty} a_i \binom{i}{n} (-1)^{i-n}.
\]

Then the function \(\hat{S} : M \rightarrow \mathbb{N}_0 \) given by \(\hat{S}(a) = S(\hat{a}) \) is a DRS.
Let \mathcal{M}_2 denote the set of two-dimensional sequences (indexed by $\mathbb{N}_0 \times \mathbb{N}_0$) of real numbers with finite support. Consider a function $\hat{S} : \mathcal{M}_2 \to \mathbb{N}_0$ such that

1. $\hat{S}(□□ * a) \leq \hat{S}(a)$
2. $\hat{S}(□ □ * a) \leq \hat{S}(a)$
3. $\hat{S}(a) \geq \text{“positive regions in } a\text{”} + \text{“negative regions in } a\text{”}$

for all $a \in \mathcal{M}_2$. Then \hat{S} gives a DRS in two variables, i.e. for any non-zero $f \in \mathbb{R}[x, y]$, it gives an upper bound for the number of connected components of the complement of the zero set of f.

Martín Avendaño

Descartes’ rule of signs.
Yes, sure!

For any \(a \in \mathcal{M}_2 \) define \(Q(a) = \text{“positive regions in } a \text{”} + \text{“negative regions in } a \text{”} \) and

\[
\hat{S}(a) = \max_{n, m \geq 0} Q(\square^n \ast \square^m \ast a).
\]

The function \(\hat{S} \) is a DRS in two variables.
Is there any DRS in two variables with a simple formula?