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Two central problems of complexity theory

1. Arithmetic complexity of the permanent
(Valiant’s algebraic version of P versus NP).

2. Derandomization of Polynomial Identity Testing.
e Problems turn out to be related.

e Progress on one may lead to progress on other problem
(approach to problem 1 advocated by Agrawal, 2005).




Valiant’'s model:VPx = VNP ?

e Complexity of a polynomialf measured by numbéi( f)
of arithmetic operations (+,<,) needed to evaluatg

L(f) = size of smallest arithmetic circuit computing

e (fn) € VP if number of variablesdeg( f,,) and L( f,,)
are polynomially bounded. For instan¢é&{?" )& VP.

o (fn) € VNPIf f,(T) = ngn@, 7)

for some(g,,) € VP
(sum ranges over all boolean valueg)pf

If char(K') # 2 the permanent is a VNP-complete family:

PER,(X)= > [ Xiow.

cesS,, 1=1




Constant-free version of Valiant’'s model

e Work with constant-free circuits (1 is the only constant).

e (f,) € VP if size andformal degreeof circuits
are polynomially bounded (Malod, 2003).

Formal degree is an upper bounddsg( £, ):
1. 1 for an input gate (variable or constant).
2. Max of formal degrees of two inputs far, — gate.

3. Sum of formal degrees for gate.

e New goal:PER(X)&VP’.




Polynomial Identity Testing

Given polynomialf, decide whethef = 0.
If given by an arithmetic circuit: ACIT problem.

Schwartz-Zippel-DeMillo-Lipton lemma:
Let f € K[X,...,X,] of degreed.
If f£0andX.,..., X, drawn independently at random fra$hC K

Pr{f(X1,..., X,) = 0] < d/|S].

“Natural” intuition about ACIT:
no efficient deterministic algorithm exists
(because we haven’t found any).




Hardness versus randomness tradeoffs

Two roughly equivalent problems:

e derandomizing algorithms

e proving lower bounds.
For each problem we neexplicit constructions.
From Kabanets-Impagliazzo (2004) :

e |f ACIT can be derandomized:
we have a lower bound for the permanentN&XP ¢ P /poly.

e |f we have a lower bound for the permanent:
ACIT can be derandomized in subexponential time
for circuits of logarithmic depth.

A possible approach to arithmetic circuit lower bounds ?
(Agrawal, 2005)




The black-box model

Only way to access:

x — | black box | — f(x).

Some problems studied in this model:
factorization, GCD, interpolation. ..

Two equivalent problems:
e derandomization of PIT in the black blox model.

e Construction of ditting set

A hitting setH for a family F of polynomials must contain a point
such thatf(z) # 0 for every f£0 in F.

Remark: Hitting sets#- derandomization in circuit model.




Hitting sets for sparse polynomials

e For the set of polynomialg € R| X | with at mostt monomials:
any setd C R* with |H| =t is a hitting set
Proof: apply Descarte’s rule of signs.

For the set polynomialg € C|X| with at mostt monomials,
of degree at most.

let H be the set of alb-th roots of unity for allp € P,
whereP is a set of at leastlog d prime numbers.

Proof: If f =0onH thenf =0 mod (X? —1) forallp € P.
Fix monomiala; X “¢ in f.
Thenp|(a,; — «;) for some other monomial; X 7.




Existence of hitting sets

Recall from Schwartz-Zippel lemma:
Prf(X1, ..., Xn) = 0] < 1/2

if S| > 2d.

Let H =m random elements &§".

For f£0, Pr[f =00onH| < 1/2™.

Let F be a family of polynomials.

By union bound H is nota hitting set with probability< | F|/2™:
takem > log | F].

Remarks: same proof aRP C P /poly (Adleman, 1978);
good bounds also for some infinite familigs(Heintz-Schnorr, 1980).




Lower bounds from (univariate) hitting sets

Let H = {a1,...,a;} be a hitting set forF, and

k

f(X) H(X —a;).

=1
Thenf&F.
If H is explicit thenf is explicit too!
Remarks:
1. This is a kind of indirect diagonalization.
2. Argument appears already in Heintz and Schnorr (1980).
3. Low-degree multivariate version in Agrawal (2005).

4. Our results are based on the univariate version.




Lower bounds for SPS polynomials

Main Theorem (informal statement):
Efficient deterministic constructions of hitting sets fonss of products
of sparse polynomials imply that the permanent is natiR.

SPS polynomials are of the forf(X) = >/, T, fi;(X)
where thef;; aret-sparse.

We have seen efficient constructions for sparse polynomials
and products thereof (Descarte’s rule).

Benefits of univariate method:

1. Would lead to lower bounds for the permanent,
Instead of polynomials with PSPACE coefficients (i.e., INSHACE).

2. Leads to refinements of Shub and Smate®njecture.




Ther-conjecture

Forf -~ Z[Xh ... 7Xn]’
7(f) = constant-free arithmetic circuit complexity 6f

Remark: If (f,) € VPY thent(f,) < n®W;
converse not always true (talle = X2 or f,, = 22").

For f € Z|X], say thatf € F. if 7(f) <.

Conjecture: Any nonzerof € F, has at mosp(7) integer roots,
for some fixed polynomigp.

Theorem (Shub - Smale, 1995):
Ther-conjecture implie®¢ # NP¢.




Two other consequences of theconjecture

1. Hitting set{1,2,3,...,p(7) + 1} for F,.

2. 7(PER,,) is not polynomially bounded in (Burgisser, 2007):
271
otherW|seH — ¢) would have polynomially bounded

1=1

Our main theorem in this special case (initial segments aX):

similar statement for SPS polynomials,

Instead of arbitrary arithmetic circuits:

If poly-size initial segments of form hitting sets for SPS polynomials,
then permanent is not MP".

More precisely...




T-conjecture for SPS polynomials

Considerf(X) = Zle H;.”:l fi;(X) where thef;; aret-sparse.
Let size(f) = number of monomials in this expression gmt).

Definition: f € SPS; . if size(f) < s, deg(fi;) <e,
and each integer coefficient of eagh:

(i) is of absolute value at mo&t;

(i) has< s nonzero digits in its binary representation
(fi; I1s a sparse polynomial with sparse coefficients).

Conjecture 1: If f € SPS; . Is nonzero,
f has at mosts + log )1 integer roots.

Remark: follows from ther-conjecture since(f) is (s + loge)°.

Theorem: Conjecture 1 implies that the permanent is novRY.




T-conjecture for SPS polynomials, strong from

RecallConjecture 1: If f € SPS; . is nonzero,
f has at mosts + log e)°(1) integer roots.

We have a degree bound, sparse and bounded coefficients...
Are these things really relevant ??

Conjecture 2: Considerf(X) = Zf:l H;-n:l fij (X),

where thef;; aret-sparse.
If fis nonzero, its number of integer roots is polynomiakint.

Remark: implies Conjecture 1 since < kmt;
does not seem to follow from Shub and Smaltesonjecture.

There is an even wilder conjecture...




Realr-conjecture

Conjecture 3: Considerf(X) =S¢ | T2, fi(X),
where thef;; aret-sparse.
If fis nonzero, its number aéal roots is polynomial inkmt.

Remark: obvious fork = 1, open fork = 2;

could techniques from real analysis show tBERZVP" ?

If true, property would be specific to SPS polynomials:
Shub and Smale have observed that in general,
the number of real roots can be exponentiat if).




Chebyshev polynomials

e LetT,, be the Chebyshev polynomial of order
cos(nd) = T,,(cosB).

For instancel’| () = z, Ty () = 22° — 1.
e T, is a degree: polynomial withn real zeros on—1, 1].

o Ton(x)="To(T5(---To(To(x))---)): n-th iterate of7s.
As aresultr(To») = O(n).
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Figure 1: Plots off; andT},




A new ingredient:
the chasm at depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial inn variables which has an arithmetic circuit
of size2°(") also has a depth-4 arithmetic circuit of s&™).

Remarks:

1. Depth-4 circuit= X1IX11 arithmetic formula;

2. Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the fornk2* or 22’
(Shallow circuit with high-powered inpyts

0

Sum of Products of Sparse Polynomials




Proof sketch (1/4)

Goal: If PER € VP then SPS polynomials of si2¢(") can compute

2™ —1

multiples of | [ (X + ).

1=1
Definition: A polynomial family(f,,) is in VNP if for some family
(gn) € VPY:

Yy boolean

Valiant’s criterion: Let

op(n) _q

o1, Zpm)) = Z an (1) - - -m;?if:)).
i=0

If a:(17%,4) — a,(i) € {0,1} isin P/poly then(f,,) € VNP,




Proof sketch (2/4)

The counting hierarchy: CoP = P; C;P = PP whereA € PP
Iff there exists a polynomial and B € P such that forr of lengthn:

reAe[{ye{0,1}"™; (z,y) € BY| > 200071,

CoP = PPPP C3P = PP&F .
Two consequencesf PER € VPY:
(i) CH C P/poly.

(i) (almost) completeness of the permanent:
for any(f,) € VNP we have(2P(™ f,,) € VP’
for some polynomially bounded sequenge) < N.




Proof sketch (3/4)
2™ —1 2™ —1
Expand producty, (X) = [[ (X +i) = ) an(a)X®.
=1 a=0
261
Binary expansiona, (o) = Y  an(i,a)2".
1=0
Hence:

2" —12"—1

In = y: y: an (i, )2 X
a=0 =0

= hn(X2, X2, X2 920 920 92T

whereh,, (X1, ..., Xn, Z1, ..., Z..) IS the multilinear polynomial
S i @)X X5 2 i

We would like to apply Valiant’s criterion. ..




Proof sketch (4/4)

Recall:h, = > > an(i,a) X - XenZi0 .. Zien,

Thea, (i, «) can be computed iGH (Burgisser),
andCH C P/poly sincePER € VP,

Hence(h,,) € VNP? (Valiant’s criterion),
or(mp, e VPY sincePER € VP (second application of hypothesis),
and2P(™ 1, has depth-4 circuits of siz2#(™) (Agrawal - Vinay).

Substitution of powerg2’ andX?’ in h,, =
2" —1

27" T (X + i) can be written as a SPS polynomial of sZ&"). O

1=1




Algebraic number generators

This is a sequencgf;);>1 of nonzero polynomials ¢f| X|:
fi(X)=>_,ala,i)X*where

1. deg(f;) < i€ and|a(c,i)| < 2¢ for some constant;

2. Thea(a, 1) can be computedfficiently i.e.,

L(f) ={(a,1,7); thej-th bitofa(«,1) is equal tol }
ISinP...orinP/poly...oreveninCH/poly.
Example: L(f) e Pfor f;(X) =X —4, X" —1or X" —2'X +4° + 1.

Remarks: A generator generate the roots of the
We will consider hitting sets made of the roots of an initedshent
of the fz




Statement of main theorem

Considerf(X) = Zle H;.”:l fi;(X) where thef;; aret-sparse;
size( f) = number of monomials in this expression gmt).

Recall theDefinition: f € SPS; . if size(f) < s, deg(fi;) <e,
and each coefficient of eagh;:

() is of absolute value at mo&t;

(i) has< s nonzero digits in its binary representation
(fi; I1s a sparse polynomial with sparse coefficients).

Theorem: Let (f;) be an algebraic number generator,

and H,,, the set of all roots of the polynomia)s for all i < m.

If there exists a polynomial such thatf, 10, ¢) IS @ hitting set
for SPS, . then the permanent is not P,




To Be Done...

Realr-conjecture: prove or disprove.

Realr-conjecture, cask = 2: prove or disprove.

Casek = 2, continued:
give a deterministic algorithm to test identities of thenfior

Fix--xF,=G % xGpn

where theF; andG; are sparse;
construct hitting sets (real or otherwise).

Adapt to univariate setting recent results on determmistir
for circuits of bounded depth (3 or 4) and bounded
(as abovek = fan-in of output gate).




