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Two central problems of complexity theory

1. Arithmetic complexity of the permanent

(Valiant’s algebraic version of P versus NP).

2. Derandomization of Polynomial Identity Testing.

• Problems turn out to be related.

• Progress on one may lead to progress on other problem

(approach to problem 1 advocated by Agrawal, 2005).
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Valiant’s model:VPK = VNPK ?

• Complexity of a polynomialf measured by numberL(f)

of arithmetic operations (+,-,×) needed to evaluatef :

L(f) = size of smallest arithmetic circuit computingf .

• (fn) ∈ VP if number of variables,deg(fn) andL(fn)

are polynomially bounded. For instance,(X2n

) 6∈VP.

• (fn) ∈ VNP if fn(x) =
∑

y

gn(x, y)

for some(gn) ∈ VP

(sum ranges over all boolean values ofy).

If char(K) 6= 2 the permanent is a VNP-complete family:

PERn(X) =
∑

σ∈Sn

n∏

i=1

Xiσ(i).
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Constant-free version of Valiant’s model

• Work with constant-free circuits (1 is the only constant).

• (fn) ∈ VP0 if size andformal degreeof circuits

are polynomially bounded (Malod, 2003).

Formal degree is an upper bound ondeg(fn):

1. 1 for an input gate (variable or constant).

2. Max of formal degrees of two inputs for+,− gate.

3. Sum of formal degrees for× gate.

• New goal:PER(X) 6∈VP0.
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Polynomial Identity Testing

Given polynomialf , decide whetherf ≡ 0.

If given by an arithmetic circuit: ACIT problem.

Schwartz-Zippel-DeMillo-Lipton lemma:
Let f ∈ K[X1, . . . , Xn] of degreed.

If f 6≡0 andX1, . . . , Xn drawn independently at random fromS ⊆ K:

Pr[f(X1, . . . , Xn) = 0] ≤ d/|S|.

“Natural” intuition about ACIT:

no efficient deterministic algorithm exists

(because we haven’t found any).
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Hardness versus randomness tradeoffs

Two roughly equivalent problems:

• derandomizing algorithms

• proving lower bounds.

For each problem we needexplicit constructions.

From Kabanets-Impagliazzo (2004) :

• If ACIT can be derandomized:

we have a lower bound for the permanent, orNEXP 6⊂P/poly.

• If we have a lower bound for the permanent:

ACIT can be derandomized in subexponential time

for circuits of logarithmic depth.

A possible approach to arithmetic circuit lower bounds ?

(Agrawal, 2005)
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The black-box model

Only way to accessf :

x 7→ black box → f(x).

Some problems studied in this model:

factorization, GCD, interpolation. . .

Two equivalent problems:

• derandomization of PIT in the black blox model.

• Construction of ahitting set.

A hitting setH for a familyF of polynomials must contain a pointx

such thatf(x) 6= 0 for everyf 6≡0 in F .

Remark: Hitting sets6⇒ derandomization in circuit model.
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Hitting sets for sparse polynomials

• For the set of polynomialsf ∈ R[X ] with at mostt monomials:

any setH ⊆ R∗
+ with |H| = t is a hitting set

Proof: apply Descarte’s rule of signs.

• For the set polynomialsf ∈ C[X ] with at mostt monomials,

of degree at mostd:

let H be the set of allp-th roots of unity for allp ∈ P,

whereP is a set of at leastt log d prime numbers.

Proof: If f = 0 onH thenf ≡ 0 mod (Xp − 1) for all p ∈ P.

Fix monomialaiX
αi in f .

Thenp|(αj − αi) for some other monomialajX
αj .
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Existence of hitting sets

Recall from Schwartz-Zippel lemma:

Pr[f(X1, . . . , Xn) = 0] ≤ 1/2

if |S| ≥ 2d.

Let H = m random elements ofSn.

Forf 6≡0, Pr[f ≡ 0 onH] ≤ 1/2m.

Let F be a family of polynomials.

By union bound,H is nota hitting set with probability≤ |F|/2m:

takem > log |F|.

Remarks: same proof asRP ⊆ P/poly (Adleman, 1978);

good bounds also for some infinite familiesF (Heintz-Schnorr, 1980).
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Lower bounds from (univariate) hitting sets

Let H = {a1, . . . , ak} be a hitting set forF , and

f(X) =
k∏

i=1

(X − ai).

Thenf 6∈F .

If H is explicit thenf is explicit too!

Remarks:

1. This is a kind of indirect diagonalization.

2. Argument appears already in Heintz and Schnorr (1980).

3. Low-degree multivariate version in Agrawal (2005).

4. Our results are based on the univariate version.
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Lower bounds for SPS polynomials

Main Theorem (informal statement):
Efficient deterministic constructions of hitting sets for sums of products

of sparse polynomials imply that the permanent is not inVP0.

SPS polynomials are of the formf(X) =
∑k

i=1

∏m

j=1 fij(X)

where thefij aret-sparse.

We have seen efficient constructions for sparse polynomials,

and products thereof (Descarte’s rule).

Benefits of univariate method:

1. Would lead to lower bounds for the permanent,

instead of polynomials with PSPACE coefficients (i.e., in VPSPACE).

2. Leads to refinements of Shub and Smale’sτ -conjecture.
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Theτ -conjecture

Forf ∈ Z[X1, . . . , Xn],

τ(f) = constant-free arithmetic circuit complexity off .

Remark: If (fn) ∈ VP0 thenτ(fn) ≤ nO(1);

converse not always true (takefn = X2n

or fn = 22n

).

Forf ∈ Z[X ], say thatf ∈ Fτ if τ(f) ≤ τ .

Conjecture: Any nonzerof ∈ Fτ has at mostp(τ) integer roots,

for some fixed polynomialp.

Theorem (Shub - Smale, 1995):
Theτ -conjecture impliesPC 6= NPC.
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Two other consequences of theτ -conjecture

1. Hitting set{1, 2, 3, . . . , p(τ) + 1} for Fτ .

2. τ(PERn) is not polynomially bounded inn (Bürgisser, 2007):

otherwise,
2n∏

i=1

(X − i) would have polynomially boundedτ .

Our main theorem in this special case (initial segments ofN):
similar statement for SPS polynomials,

instead of arbitrary arithmetic circuits:

If poly-size initial segments ofN form hitting sets for SPS polynomials,

then permanent is not inVP0.

More precisely...
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τ -conjecture for SPS polynomials

Considerf(X) =
∑k

i=1

∏m

j=1 fij(X) where thefij aret-sparse.

Let size(f) = number of monomials in this expression (≤ kmt).

Definition: f ∈ SPSs,e if size(f) ≤ s, deg(fij) ≤ e,

and each integer coefficient of eachfij :

(i) is of absolute value at most2e;

(ii) has≤ s nonzero digits in its binary representation

(fij is a sparse polynomial with sparse coefficients).

Conjecture 1: If f ∈ SPSs,e is nonzero,

f has at most(s + log e)O(1) integer roots.

Remark: follows from theτ -conjecture sinceτ(f) is (s + log e)O(1).

Theorem: Conjecture 1 implies that the permanent is not inVP0.
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τ -conjecture for SPS polynomials, strong from

RecallConjecture 1: If f ∈ SPSs,e is nonzero,

f has at most(s + log e)O(1) integer roots.

We have a degree bound, sparse and bounded coefficients...

Are these things really relevant ??

Conjecture 2: Considerf(X) =
∑k

i=1

∏m

j=1 fij(X),

where thefij aret-sparse.

If f is nonzero, its number of integer roots is polynomial inkmt.

Remark: implies Conjecture 1 sinces ≤ kmt;

does not seem to follow from Shub and Smale’sτ -conjecture.

There is an even wilder conjecture...
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Realτ -conjecture

Conjecture 3: Considerf(X) =
∑k

i=1

∏m

j=1 fij(X),

where thefij aret-sparse.

If f is nonzero, its number ofreal roots is polynomial inkmt.

Remark: obvious fork = 1, open fork = 2;

could techniques from real analysis show thatPER 6∈VP0 ?

If true, property would be specific to SPS polynomials:

Shub and Smale have observed that in general,

the number of real roots can be exponential inτ(f).
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Chebyshev polynomials

• Let Tn be the Chebyshev polynomial of ordern:

cos(nθ) = Tn(cos θ).

For instanceT1(x) = x, T2(x) = 2x2 − 1.

• Tn is a degreen polynomial withn real zeros on[−1, 1].

• T2n(x) = T2(T2(· · ·T2(T2(x)) · · ·)): n-th iterate ofT2.
As a resultτ(T2n) = O(n).
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Figure 1: Plots ofT2 andT4
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A new ingredient:
the chasm at depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial inn variables which has an arithmetic circuit

of size2o(n) also has a depth-4 arithmetic circuit of size2o(n).

Remarks:

1. Depth-4 circuit≡ ΣΠΣΠ arithmetic formula;

2. Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the formX2i

or 22j

(Shallow circuit with high-powered inputs)

m

Sum of Products of Sparse Polynomials
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Proof sketch (1/4)

Goal: If PER ∈ VP0 then SPS polynomials of size2o(n) can compute

multiples of
2n−1∏

i=1

(X + i).

Definition: A polynomial family(fn) is in VNP0 if for some family

(gn) ∈ VP0:

fn(x) =
∑

y boolean

gn(x, y).

Valiant’s criterion: Let

fn(x1, . . . , xp(n)) =

2p(n)−1∑

i=0

an(i)xi1
1 · · ·x

ip(n)

p(n) .

If a : (1n, i) 7→ an(i) ∈ {0, 1} is in P/poly then(fn) ∈ VNP0.
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Proof sketch (2/4)

The counting hierarchy: C0P = P; C1P = PP whereA ∈ PP

iff there exists a polynomialp andB ∈ P such that forx of lengthn:

x ∈ A ⇔ |{y ∈ {0, 1}p(n); 〈x, y〉 ∈ B}| > 2p(n)−1.

C2P = PPPP, C3P = PPC2P,. . .

Two consequencesof PER ∈ VP0:

(i) CH ⊆ P/poly.

(ii) (almost) completeness of the permanent:

for any(fn) ∈ VNP0 we have(2p(n)fn) ∈ VP0

for some polynomially bounded sequencep(n) ∈ N.
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Proof sketch (3/4)

Expand product:gn(X) =

2n−1∏

i=1

(X + i) =

2n−1∑

α=0

an(α)Xα.

Binary expansion:an(α) =

2c.n−1∑

i=0

an(i, α)2i.

Hence:

gn =
2n−1∑

α=0

2c.n−1∑

i=0

an(i, α)2iXα

= hn(X20

, X21

, . . . , X2n−1

, 220

, 221

, . . . , 22c·n−1

)

wherehn(X1, . . . , Xn, Z1, . . . , Zc·n) is the multilinear polynomial
∑

α

∑

i

an(i, α)Xα1
1 · · ·Xαc·n

·n Zi1
1 · · ·Zic·n

c·n .

We would like to apply Valiant’s criterion. . .
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Proof sketch (4/4)

Recall:hn =
∑

α

∑
i an(i, α)Xα1

1 · · ·Xαn
n Zi1

1 · · ·Zic·n
c·n .

Thean(i, α) can be computed inCH (Bürgisser),

andCH ⊆ P/poly sincePER ∈ VP0.

Hence(hn) ∈ VNP0 (Valiant’s criterion),

2p(n)hn ∈ VP0 sincePER ∈ VP0 (second application of hypothesis),

and2p(n)hn has depth-4 circuits of size2o(n) (Agrawal - Vinay).

Substitution of powers22i

andX2j

in hn ⇒

2p(n)
2n−1∏

i=1

(X + i) can be written as a SPS polynomial of size2o(n). 2
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Algebraic number generators

This is a sequence(fi)i≥1 of nonzero polynomials ofZ[X ]:

fi(X) =
∑

α a(α, i)Xα where

1. deg(fi) ≤ ic and|a(α, i)| ≤ 2ic

for some constantc;

2. Thea(α, i) can be computedefficiently, i.e.,

L(f) = {(α, i, j); thej-th bit of a(α, i) is equal to1}

is in P. . . or inP/poly . . . or even inCH/poly.

Example: L(f) ∈ P for fi(X) = X − i, Xi − 1 or Xi − 2iX + i2 + 1.

Remarks: A generator generate the roots of thefi;

We will consider hitting sets made of the roots of an initial segment

of thefi.
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Statement of main theorem

Considerf(X) =
∑k

i=1

∏m

j=1 fij(X) where thefij aret-sparse;

size(f) = number of monomials in this expression (≤ kmt).

Recall theDefinition: f ∈ SPSs,e if size(f) ≤ s, deg(fij) ≤ e,

and each coefficient of eachfij :

(i) is of absolute value at most2e;

(ii) has≤ s nonzero digits in its binary representation

(fij is a sparse polynomial with sparse coefficients).

Theorem: Let (fi) be an algebraic number generator,

andHm the set of all roots of the polynomialsfi for all i ≤ m.

If there exists a polynomialp such thatHp(s+log e) is a hitting set

for SPSs,e then the permanent is not inVP0.
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To Be Done...

• Realτ -conjecture: prove or disprove.

• Realτ -conjecture, casek = 2: prove or disprove.

• Casek = 2, continued:

give a deterministic algorithm to test identities of the form

F1 × · · · × Fm = G1 × · · · × Gm

where theFi andGi are sparse;

construct hitting sets (real or otherwise).

• Adapt to univariate setting recent results on deterministic PIT

for circuits of bounded depth (3 or 4) and boundedk

(as above,k = fan-in of output gate).
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