Problems in Pluripotential Theory

John Anderson (College of the Holy Cross), Joe Cima (University of North Carolina), Norm Levenberg (Indiana University), Tom Ransford (Université Laval)

May 29 - June 5, 2011

1 Overview of the Field

Let K be a compact set in \mathbb{C}^n . A central object of study in potential theory (n = 1) and in pluripotential theory (n > 1) is the *pluricomplex Green function*:

$$V_K(\mathbf{z}) := \sup\{\frac{1}{\deg(p)} \log |p(\mathbf{z})| : ||p||_K \le 1, \ p \text{ (holomorphic) polynomial}\}.$$

The uppersemicontinuous regularization $V_K^*(\mathbf{z}) := \limsup_{\zeta \to \mathbf{z}} V_K(\zeta)$ is either identically $+\infty$, if K is pluripolar; i.e., $K \subset \{\mathbf{z} : u(\mathbf{z}) = -\infty\}$ for some $u \not\equiv -\infty$ which is plurisubharmonic on a neighborhood of K, or else V_K^* is plurisubharmonic in \mathbb{C}^n . For $K \subset \mathbb{C}^n$ compact, the polynomial hull of K is the set

$$\hat{K}_P := \{ \mathbf{z} \in \mathbf{C}^n : |p(\mathbf{z})| \le ||p||_K \text{ for all polynomials } p \}$$
$$= \{ \mathbf{z} \in \mathbf{C}^n : V_K(\mathbf{z}) = 0 \}$$

(thus $V_K = V_{\hat{K}_P}$) while the projective hull of K (cf. [3]) is the set

$$\hat{K} := \{ \mathbf{z} \in \mathbf{C}^n : \exists \ C_{\mathbf{z}} \text{ with } |p(\mathbf{z})| \le C_{\mathbf{z}}^{\deg p} ||p||_K \text{ for all polynomials } p \}$$
$$= \{ \mathbf{z} \in \mathbf{C}^n : V_K(\mathbf{z}) < +\infty \}.$$

Wermer [7] showed that if γ is a real-analytic curve in \mathbb{C}^n , then $\hat{\gamma}_P \setminus \gamma$ is a one-dimensional, complexanalytic subvariety of $\mathbb{C}^n \setminus \gamma$. The projective hull is a notion which, *a priori*, is defined for closed subsets K of \mathbb{P}^n ; if $K \subset \mathbb{P}^n$ is contained in an affine $\mathbb{C}^n \subset \mathbb{P}^n$, then the portion of this more general notion of the projective hull for subsets of \mathbb{P}^n that lies in \mathbb{C}^n coincides with our definition of the projective hull for subsets of \mathbb{C}^n . Harvey and Lawson [3] conjectured that if γ is a real-analytic curve in \mathbb{P}^n , then $\hat{\gamma} \setminus \gamma$ is a one-dimensional, complex-analytic subvariety of $\mathbb{P}^n \setminus \gamma$.

Clearly the projective hull is interesting only if K is pluripolar. Since there exist C^{∞} curves γ in \mathbb{C}^n which are *not* pluripolar [2], the Harvey-Lawson assumption that γ be real-analytic is natural. The projective hull is a subtle object. For example, a fascinating result of Sadullaev [5] implies that if A is a connected, pure m-dimensional complex-analytic subvariety of \mathbb{C}^n , $1 \leq m \leq n-1$, and if $K \subset A$ is compact and not pluripolar in A^{reg} (the regular points of A), then $A \subset \hat{K}$ if and only if A is algebraic.

Unwinding the definitions, the condition that $\mathbf{z}_0 \in \hat{K}_P$ says that $|p(\mathbf{z}_0)| \leq ||p||_K$ for all polynomials $p(\mathbf{z})$ while the condition that $\mathbf{z}_0 \in \hat{K}$ says that

$$|p(\mathbf{z}_0)| \le C_{\mathbf{z}_0}^{\deg p} ||p||_K \tag{1}$$

for all polynomials $p(\mathbf{z})$ where $C_{\mathbf{z}_0} = e^{V_K(\mathbf{z}_0)}$. These growth estimates provides some motivation for the results and questions below.

2 **Recent Developments and Open Problems**

An old result of Rudin [4] can be paraphrased as follows: let $\Delta := \{z \in \mathbf{C} : |z| < 1\}$ denote the unit disk in \mathbf{C} and let $\phi \in C(\overline{\Delta})$, i.e., ϕ is a continuous, complex-valued function on $\overline{\Delta}$. Consider the vector space

$$\mathcal{M} := \{ a + b\phi : a, b \text{ (univariate, holomorphic) polynomials} \}.$$
(2)

Suppose for all $z_0 \in \Delta$,

$$|f(z_0)| \le ||f||_T := \max_{|\zeta|=1} |f(\zeta)| \text{ for all } f \in \mathcal{M}.$$

Then ϕ is holomorphic in Δ . Wermer considered a weak version of this maximum principle hypothesis:

For all
$$z_0 \in \Delta$$
, there exists C_{z_0} such that $|f(z_0)| \le C_{z_0} ||f||_T$ for all $f \in \mathcal{M}$. (3)

Under the additional assumption that $\phi|_T$ be real-analytic, he reached the same conclusion as Rudin. Note that in the setting of (2), condition (3) becomes

$$|a(z_0) + b(z_0)\phi(z_0)| \le C_{z_0} ||a + b\phi||_T \text{ for all polynomials } a, b.$$

$$\tag{4}$$

Now suppose $\phi \in C(\Delta \setminus \{0\})$. We let

$$\gamma := \{ (z, \phi(z)) : |z| = 1 \}$$

and

$$\Sigma := \{ (z, \phi(z)) : 0 < |z| < 1 \}.$$

Consider the condition that $\Sigma \subset \hat{\gamma}$. This says that for each $0 < |z_0| < 1$, there exists a constant C_{z_0} with

$$|p(z_0, \phi(z_0))| \le C_{z_0}^{\deg p} ||p(\cdot, \phi(\cdot))||_T = C_{z_0}^{\deg p} ||p||_{\gamma}$$

for all polynomials p = p(z, w). Wermer [8] observed that if ϕ is meromorphic in Δ then $\Sigma \subset \hat{\gamma}$. He conjectured that the following converse-type result was true: given $\phi \in C(\bar{\Delta} \setminus \{0\})$ with ϕ real-analytic on T, if $\Sigma \subset \hat{\gamma}$, then ϕ is meromorphic in Δ . The real-analyticity of ϕ on T was assumed to ensure that γ be pluripolar. Note that (4) is related to this projective hull hypothesis in the sense that (4) is (1) at the point $(z_0, \phi(z_0))$ for polynomials p(z, w) which have degree at most one in w and with C_{z_0} to the first power.

3 Presentation Highlights

Since this was a "Research in teams" assembly there were no formal presentations.

4 Scientific Progress Made

We proved a generalization of the existing version of the Rudin and Wermer results.

Theorem. Let *F* be a finite subset of Δ and let $\phi \in C(\overline{\Delta} \setminus F)$. The following are equivalent:

```
1. \phi is meromorphic on \Delta;
```

2. for each $z_0 \in \Delta \setminus F$ there exists C_{z_0} such that $|a(z_0)+b(z_0)\phi(z_0)| \leq C_{z_0}||a+b\phi||_T$ for all polynomials a, b.

A deep result of Shcherbina [6] states that if $\Omega \subset \mathbf{C}$ is a domain and $f: \Omega \to \mathbf{C}$ is a continuous function with $\{(z, f(z)) : z \in \Omega\} \subset \mathbf{C}^2$ pluripolar, then f is holomorphic. Using this, we can show:

Proposition. Let $\phi \in C(\overline{\Delta} \setminus \{0\})$. Suppose γ is pluripolar and $\Sigma \subset \hat{\gamma}$. Then ϕ is holomorphic on $\Delta \setminus \{0\}$.

A deeper problem is to conclude that ϕ has at worst a pole at the origin. A sufficient condition ensuring this is that $\Sigma = \hat{\gamma} \cap ((\Delta \setminus \{0\}) \times \mathbf{C})$. This allows us to easily show that V_{γ} is harmonic on Σ . We suspect this extra hypothesis is unnecessary.

To motivate a future look at some pluripotential-theoretic questions, we considered the classic univariate setting of complex potential theory. Let $\mathcal{M}(K)$ denote the convex set of probability measures supported in a given nonpolar compact set $K \subset \mathbf{C}$. For $\mu \in \mathcal{M}(K)$, let

$$p_{\mu}(z) := \int_{K} \log \frac{1}{|\zeta - z|} d\mu(\zeta) \text{ and } I(\mu) := \int_{K} \int_{K} \log \frac{1}{|\zeta - z|} d\mu(\zeta) d\mu(z)$$

denote the logarithmic potential and logarithmic energy of μ . Define

$$C_K := \{ \mu \in \mathcal{M}(K) : p_\mu \text{ is continuous} \};$$
$$E_K := \{ \mu \in \mathcal{M}(K) : I(\mu) < +\infty \};$$
$$P_K := \{ \mu \in \mathcal{M}(K) : \mu(P) = 0 \text{ for all polar } P \}.$$

Clearly $C_K \subset E_K \subset P_K \subset \mathcal{M}(K)$. We verified:

Proposition. Suppose K is not polar at each of its points; i.e., for each $z \in K$ and each r > 0, $K \cap B(z, r) = \{z' \in K : |z - z'| < r\}$ is not polar. Then C_K is dense in $\mathcal{M}(K)$ in the weak-* topology.

A key element of the proof of the proposition is the following: if $K \subset \mathbf{C}$ is not polar, then there exists a positive measure μ with support in K such that p_{μ} is continuous. A deep theorem of Ancona [1] gives a stronger result: if $K \subset \mathbf{C}$ is not polar, then there exists a compact set $K' \subset \mathbf{C}$ with $V_{K'}$ continuous. The proof in [1] is difficult; we discussed a different approach to a possible proof beginning with the measure μ .

5 Outcome of the Meeting

We are in the process of writing up and submitting for publication an article which will include our generalization of the Rudin/Wermer/projective hull results. We will continue to work on eliminating the extra hypothesis $\Sigma = \hat{\gamma} \cap ((\Delta \setminus \{0\}) \times \mathbf{C})$. Future projects may include a possible Rudin/Wermer theorem on the polydisk in \mathbf{C}^n , n > 1. Questions related to Ancona's theorem [1] and analogues of the subsets C_K , E_K , P_K of $\mathcal{M}(K)$ for $K \subset \mathbf{C}^n$, n > 1 will require more thought.

References

- A. Ancona, Sur une conjecture concernant la capacité et l'effilement. (French) [On a conjecture concerning capacity and thinness]. Théorie du potentiel (Orsay, 1983), 34-68, *Lecture Notes in Math.*, 1096, Springer, Berlin, 1984.
- [2] K. Diederich and J.-E. Fornaess, Smooth, but not complex-analytic pluripolar sets. *Manuscripta Math.*, **37**, (1982), no. 1, 121-125.
- [3] R. Harvey and B. Lawson, Projective hulls and the projective Gelfand transform, *Asian J. Math.*, **10**, (2006), no. 3, 607-646.
- [4] W. Rudin, Real and Complex Analysis, McGraw Hill, Inc., N.Y., 1966.

- [5] A. Sadullaev, An estimate for polynomials on analytic sets, *Math. USSR Izv.*, **20**, (1983), no. 3, 493-502.
- [6] N. Shcherbina, Pluripolar graphs are holomorphic, Acta Math., 194, (2005), no. 2, 203-216.
- [7] J. Wermer, The hull of a curve in \mathbb{C}^n , Ann. of Math. 68, (1958), no. 2, 550-561.
- [8] J. Wermer, Rudin's Theorem and Projective Hulls, arXiv:math/0611060.