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Introduction

Broad Categories

Spatially discrete
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Introduction

Illustrative Equation

Transport in 2D nondivergent flow.

Advective form:
∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
= 0.

Flux form, an equivalent expression obtained using continuity:

∂ψ

∂t
+
∂uψ
∂x

+
∂vψ
∂y

= 0.

Flux form facilitates the construction of schemes with local
(cell-wise) and global conservation.
Advective form helps preserve uniform ψ in non-trivial velocity
fields
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Spatially Discrete

Finite difference notation

δnx f (x) =
f (x + n∆x/2)− f (x − n∆x/2)

n∆x

Example:

δx fj =
fj+ 1

2
− fj− 1

2

∆x
Local conservation:

dφi,j

dt
+ δx (ui,jφi,j) + δy (vi,jφi,j) = 0
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Spatially Discrete

Finite-Difference Methods

Unknowns are

values at points on a grid: φn
j ≈ ψ(j∆x ,n∆t)

Can approximate flux or advective form
Basic methods are quite simple:(

dψ
dx

)
j

= δ2xφj+O[(∆x)2],

(
dψ
dx

)
j

=
4
3
δ2xφj−

1
3
δ4xφj+O[(∆x)4]

More advanced approach: a 4th-order compact scheme

1
24

[
5
(

dψ
dx

)
j+1

+ 14
(

dψ
dx

)
j

+ 5
(

dψ
dx

)
j−1

]
=

1
12
(
11δ2xφj + δ4xφj

)
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Spatially Discrete

Phase Speed Error in 1D Advection

Semi-discrete approximation to
∂ψ

∂t
+ c

∂ψ

∂x
= 0.
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Spatially Discrete

Utility of High Order

High order schemes converge more rapidly as the grid is refined when
the solution is already almost correct.

They are essential for efficiency when really trying to converge.
Convergence is never achieved in high Reynolds number
atmospheric flow. (Why not?)

Exception: all those complicated linear solutions for nontrivial basic
states!

In atmospheric applications, errors are generally dominated by the
most poorly resolved scales.
High-order schemes may treat the marginally resolved scales
better.
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Spatially Discrete

Utility of High Order II

Is it best to approximate all terms with differences having the same
order of accuracy?

Yes – if you are trying to achieve convergence.
Not particularly if you are trying to improve the representation of
poorly resolved scales.
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Spatially Discrete

Example: Staggered Meshes

Arakawa C-grid

um+ 1 , n
    2

wm,n+ 1

             2

∆z

∆x

Pm,n  bm,n

um–  1 , n
     2

wm,n– 1

             2
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Spatially Discrete

Example: Staggered Meshes II

Phase speeds using staggered (S) or unstaggered (U) 2nd- or 4th-order differences

0 π/4∆ π/2∆ 3π/4∆ π/∆
WAVE  NUMBER

50∆ 10∆ 6∆ 4∆ 3∆ 2∆
WAVELENGTH

0

 

 

 

 

c
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E 
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2U
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Spatially Discrete

Trouble with 2∆x-Waves

Finite-difference methods do not propagate 2∆x-waves on an
unstaggered mesh. Why not?
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Spatially Discrete

2∆x-Waves and Negative Group Velocities

Animation of 2∆x-wide spike simulated by upstream and by explicit
centered 2nd and 4th-order finite differences.

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 12 / 50

http://www.atmos.washington.edu/academics/classes/2011Q2/582/Ioops/spike_124.mpeg
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Spatially Discrete

2∆x-Waves and Negative Group Velocities

Group velocity is ∂(frequency)
∂(wavenumber)

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 13 / 50



Spatially Discrete

Killing Off 2∆x-Waves

2∆x waves are in serious error
Very short waves can generate aliasing error

Remove the very short waves via:
A scale-selective global filter

(Nonlinear) local filters that become active only in regions with
large-amplitude short-waves

e.g., WENO finite difference methods
Major focus of finite-volume methods
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Spatially Discrete

Finite Volume Methods

Unknowns are cell averages:

φn
j ≈

1
∆x

∫ xj +∆x/2

xj−∆x/2
ψ(x ,n∆t) dx

Essential for the simulation of shocks
Weak solutions satisfy integral form of conservation law

Approximations most naturally in flux form
Fluxes at cell boundaries computed from sub-cell reconstructions
Leads directly to two-level forward-in-time schemes
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Spatially Discrete

Sub-Cell Reconstructions

f

x
0 2π

f

x
0 2π

(a)

(b)
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Spatially Discrete

Avoiding overshoots and undershoots

When it it important?

When simulating shocks. Consistent monotone
methods in flux form converge to the entropy consistent solution.

φn+1
j = H(φn

j−p, . . . , φ
n
j+q+1),

is monotone if
∂ H(φj−p, . . . , φj+q+1)

∂φi
≥ 0

for each integer i in the interval [j − p, j + q+1].

Monotone schemes
Do not produce spurious ripples.
Are first-order accurate.

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 17 / 50



Spatially Discrete

Avoiding overshoots and undershoots

When it it important? When simulating shocks. Consistent monotone
methods in flux form converge to the entropy consistent solution.

φn+1
j = H(φn

j−p, . . . , φ
n
j+q+1),

is monotone if
∂ H(φj−p, . . . , φj+q+1)

∂φi
≥ 0

for each integer i in the interval [j − p, j + q+1].

Monotone schemes
Do not produce spurious ripples.
Are first-order accurate.

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 17 / 50



Spatially Discrete

Avoiding overshoots and undershoots

When it it important? When simulating shocks. Consistent monotone
methods in flux form converge to the entropy consistent solution.

φn+1
j = H(φn

j−p, . . . , φ
n
j+q+1),

is monotone if
∂ H(φj−p, . . . , φj+q+1)

∂φi
≥ 0

for each integer i in the interval [j − p, j + q+1].

Monotone schemes
Do not produce spurious ripples.
Are first-order accurate.

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 17 / 50



Spatially Discrete

Avoiding overshoots and undershoots

When it it important? When simulating shocks. Consistent monotone
methods in flux form converge to the entropy consistent solution.

φn+1
j = H(φn

j−p, . . . , φ
n
j+q+1),

is monotone if
∂ H(φj−p, . . . , φj+q+1)

∂φi
≥ 0

for each integer i in the interval [j − p, j + q+1].

Monotone schemes
Do not produce spurious ripples.
Are first-order accurate.

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 17 / 50



Spatially Discrete

Advection of a Step Function

0.5 1 0.5 1x x

(a) (b)

Left: 2nd-order centered with global 4th-derivative smoother

Right: Upstream and Lax-Friedrichs (red) monotone methods

Strategy: Scheme becomes monotone near discontinuities and is
high-order elsewhere.
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Spatially Discrete

Avoiding overshoots and undershoots

When is it important in problems without shocks?

Chemically reacting
flow

∂ψ1

∂t
+ c

∂ψ1

∂x
= −rψ1ψ2,

∂ψ2

∂t
+ c

∂ψ2

∂x
= rψ1ψ2.

ψ1

ψ2
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Spatially Discrete

Minmod limiter

One local-smoothing strategy to prevent growth of ripples.

x

φ~

If sgn(φj+1 − φj) 6= sgn(φj − φj−1) slope in cell j is zero
Otherwise | slope | is min(|φj+1 − φj |, |φj − φj−1|)

Scheme is TVD, but not monotone.
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Spatially Discrete

Limiters in Action

Minmod (long-dashed), MC (red), Superbee (short-dashed)

(a) (b)

2 3
x

0 30∆
x

Nice job at jump, but messes up smooth extremum.
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Spatially Discrete

Order of Accuracy

Scheme Estimated Order of Accuracy
Upstream 0.9

Minmod Limiter 1.6
Superbee Limiter 1.6

Zalesak FCT 1.7
MC Limiter 1.9

Lax–Wendroff 2.0

Table: Empirically determined order of accuracy for constant-wind-speed
advection of a sine wave

Avoid limiting smooth extrema!
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Series Expansions

Orthogonal Expansion Functions

Unknowns are coefficients of expansion functions ak (t)

φ(x , t) =
N∑

k=1

ak (t)ϕk (x)

Evolution equations for ak obtained via
Galerkin requirement that residual be orthogonal to all ϕk (x)

“Spectral"
Global conservation of φ and φ2

Collocation requirement that sets the residual to zero at a set of
grid points

“Pseudo-spectral"
50% faster than spectral
Lose conservation
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Series Expansions

Orthogonal Expansion Functions – II

Using orthogonal expansion functions
Decouples the evolution equations for the ak (good for explicit time
differencing).

Computation of the forcing for all N of the ak involves O(N2)
operations (Fourier methods can be O(N log N)).
“Spectral accuracy" when approximating smooth functions — error
goes to zero faster than any finite power of the effective grid
spacing.
Not conducive to preserving positivity or treating steep gradients
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Series Expansions

Global Overshoots and Undershoots with Poor
Resolution

(b)(a)
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Series Expansions

Global Spectral Model

Expansion functions are spherical harmonics.
Avoids problems with short time steps at poles.

Efficient semi-implicit approximation of the pressure gradient
terms.
Common choice for the dynamical variables in global hydrostatic
models.
Moisture variables often finite volume or finite difference.
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Series Expansions

Finite Element Methods

Piecewise linear elements (chapeau functions)
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Series Expansions

Finite Element Methods

Expansion functions have compact support
Evaluation of the forcing for all N of the ak involves only O(N)
operations.

The evolution equations for the ak are coupled
Implicit solve every time step
Very inefficient for wave-propagation problems

Implicit coupling in quadratic or cubic finite element methods
makes them completely impractical for the simulation of waves.
Higher-order finite element methods are the nevertheless the
standard approach for solving may elliptic problems.
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Series Expansions

Finite Element versus Compact Differencing in 1D

1D advection equation
∂ψ

∂t
+ c

∂ψ

∂x
= 0

Piecewise linear finite-elements:

d
dt

(
aj+1 + 4aj + aj−1

6

)
+ c

(
aj+1 − aj−1

2∆x

)
= 0

4th-order compact scheme:

dφj

dt
+ c

(
dψ
dx

)
j

= 0

1
6

[(
dψ
dx

)
j+1

+ 4
(

dψ
dx

)
j

+

(
dψ
dx

)
j−1

]
=
φj+1 − φj−1

2∆x
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Series Expansions

Finite Element versus Compact Differencing in 1D

Schemes are identical!
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Series Expansions

Finite Element versus Compact Differencing in 2D

4th-order compact scheme:

dφi,j

dt
+ u

(
dψ
dx

)
i,j

+ v
(

dψ
dy

)
i,j

= 0

1
6

[(
dψ
dx

)
i+1,j

+ 4
(

dψ
dx

)
i,j

+

(
dψ
dx

)
i−1,j

]
=
φi+1,j − φi−1,j

2∆x

1
6

[(
dψ
dy

)
i,j+1

+ 4
(

dψ
dy

)
i,j

+

(
dψ
dy

)
i,j−1

]
=
φi,j+1 − φi,j−1

2∆y

Finite-elements: huge implicit mess (element couples with itself and 8
neighbors).
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Hybrid Methods

The Challenge

How do we
Extend finite-volume methods to high order (beyond piecewise
parabolic or cubic)?

Extend finite-element methods to high order while avoiding implicit
coupling (and other bad behaviors)?
Avoid the global coupling and O(N2) operation counts to update a
set of expansion coefficients in spectral or pseudo-spectral
methods?
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Hybrid Methods

One Solution

Use h-p methods – break domain into h elements and represent the
solution within each element by orthogonal polynomials of maximum
order p.

Spectral element methods – solution is continuous at cell
boundaries (good for approximating 2nd-order derivatives).
Discontinuous Galerkin methods – solution is discontinuous
across cell boundaries (localizes communication between cells).
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Hybrid Methods

Discontinuous Galerkin Method

Enforce Galerkin criterion locally, within each element.

Polynomial structure within each element is either
Modal variant: Legendre polynomials

Orthogonal on [−1,1] with weight function unity

Nodal variant: Lagrange polynomials interpolating the
Gauss-Legendre-Lobatto (GLL) points

Most accurate node placement for quadrature when there is a node
at each end of the interval
Polynomials are not truly orthogonal
Discrete integrals are orthogonal due to the approximate
quadrature on the GLL nodes
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Hybrid Methods

Modal DG

First 5 Legendre Polynomials

(a)
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Hybrid Methods

Nodal DG

Lagrange Polynomials Interpolating 5 GLL Nodes

(b)
-1 -0.5 0 0.5 1

-0.5

0

0.5

1

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 37 / 50



Hybrid Methods

Convergence as a Function of Resolution

Nodal DG errors as a function of execution time
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Most efficient way to reduce error is to increase the polynomial order.
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Hybrid Methods

DG Considerations

Advantages:
Suitable for massively parallel computing

Communicates via fluxes with nearest neighbors only
For high order polynomials, solution relatively insensitive to flux
formulation
Lots of work to do within each element

Rapid convergence for smooth solutions
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Hybrid Methods

DG Considerations II

Disadvantages:
Requires very short time step

Grid spacing reduced toward element boundaries

Discontinuities
Can be accommodated across element boundaries by limiting the
fluxes

Cannot naturally be accommodated within each element
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Fluid Dynamical Viewpoint

Eulerian

Accelerations evaluated at fixed points.

+ Easily adapted to many grid structures
- Need to evaluate nonlinear advection terms (u∂v/∂x).
- Impossible to eliminate numerical diffusion in high Reynolds
number flow
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Fluid Dynamical Viewpoint

Lagrangian

Accelerations evaluated along fluid parcel trajectories

+ Can completely eliminate numerical diffusion
+ No nonlinear advection terms to evaluate
+ Some processes (like advection) Doppler shift to lower
frequencies (allowing larger time steps).
- Trajectory for each fluid parcel must be evaluated
- Fluid parcels tend to become unevenly distributed.
- Awkward to compute gradients of field variables (∂p/∂x)
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Fluid Dynamical Viewpoint

Semi-Lagrangian

Fluid parcels arrive at every node on the specified mesh at the end of
each time step.

Semi-Lagrangian approximation to the advection equation is

φ(xj , tn+1)− φ(x̃n
j , t

n)

∆t
= 0,

where x̃n
j denotes the departure point of a trajectory originating at time

tn and arriving at (xj , tn+1).
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Fluid Dynamical Viewpoint

Semi-Lagrangian II

For constant U > 0
x̃n

j = xj − U∆t .

Let p be the integer part of U∆t/∆x , then

xj−p−1 ≤ x̃n
j < xj−p

7.1 The Scalar Advection Equation 359

investigate the additional considerations that arise when variations in the velocity
field make the backward trajectory calculation nontrivial.

7.1.1 Constant Velocity

A semi-Lagrangian approximation to the advection equation for a passive tracer can
be written in the form

!.xj ; tnC1/ ! !. Qxn
j ; tn/

"t
D 0; (7.4)

where Qxn
j again denotes the departure point of a trajectory originating at time tn and

arriving at .xj ; tnC1/. If the velocity is constant, the backward trajectory computa-
tion is trivial, and letting U denote the wind speed,

Qxn
j D xj ! U"t:

Let p be the integer part of U"t="x and without loss of generality suppose that
U " 0; then Qxn

j lies in the interval xj !p!1 # x < xj !p , as shown in Fig. 7.1.
Defining

˛ D
xj !p ! Qxn

j

"x

and approximating !. Qxn
j ; tn/ by linear interpolation, (7.4) becomes

!nC1
j D .1 ! ˛/!n

j !p C ˛!n
j !p!1; (7.5)

where !n
j D !.xj ; tn/. Note that if "t is small enough that

0 # U
"t

"x
# 1;

(7.5) reduces to the formula for Eulerian upstream differencing.

x

t

UD t

αDx
tn+1

tn
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Semi-Lagrangian III

Interpolate the grid-point values to x̃n
j .

If U∆t/∆x ≤ 1
Linear interpolation gives upstream scheme
Quadratic interpolation gives Lax-Wendroff

Interpolation introduces numerical diffusion
Use at cubic interpolation (cheat in 2 or 3D)
Take the largest possible time step. What limits ∆t?

Accuracy of the trajectory calculation
Frequency of the forcing in the Lagrangian frame
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CFL Condition

Time step can be very large when simulating advection of a passive
scalar (e.g., U∆t/∆x = 4). Do SL methods avoid the CFL condition?

Courant-Freidrichs-Levy Condition: the numerical domain of
dependence must include the domain of dependence of the true
solution. (Necessary but not sufficient for stability.)

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 46 / 50



Fluid Dynamical Viewpoint

CFL Condition

Time step can be very large when simulating advection of a passive
scalar (e.g., U∆t/∆x = 4). Do SL methods avoid the CFL condition?

Courant-Freidrichs-Levy Condition: the numerical domain of
dependence must include the domain of dependence of the true
solution. (Necessary but not sufficient for stability.)

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 46 / 50



Fluid Dynamical Viewpoint

Eulerian CFL

Upstream differencing, constant-windspeed advection
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Semi-Lagrangian CFL

Linear interpolation to departure point, constant-windspeed advection

Dale Durran (Atmospheric Sci.) BIRS 2011 University of Washington 48 / 50



Fluid Dynamical Viewpoint

Eulerian vs Semi-Lagrangian

Semi-Lagrangian widely used for global-scale models, seldom used on
the mesoscale.

SL very effective for dealing with the pole problem in global
models.
Large-scale dynamics mostly advection of PV.

Trajectories smooth compared to advected field.

Typical CFL number of 4 in global models is determined by
jet-stream max.

Max ≈ 160 m s−1; most winds < 40 m s−1, so CFL over most of the
domain < 1

Vertical advection often associated with limiting CFL in simulations
of convection.

Trajectory morphology not simpler than the advected fields.
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