Laplace Transform Integration of the Shallow Water Equations

Peter Lynch
School of Mathematical Sciences
University College Dublin

BIRS Summer School, Banff, 10-15 July, 2011

Outline

Basic Theory

Residue Theorem
Numerical Inversion
Ordinary Differential Equations
Application to NWP
Kelvin Waves \& Phase Errors
Lagrangian Formulation

Outline

Basic Theory

Residue Theorem

Numerical Inversion

Ordinary Difierential Equations

Application to NWP

Keivin Waves \& Phase Errors
Lagrangian Formulation

Integral Transforms in General

The LT is one of a large family of integral transforms

Integral Transforms in General

The LT is one of a large family of integral transforms
Suppose we have a function $f(t)$ for $t \in \mathcal{D}$.

Integral Transforms in General

The LT is one of a large family of integral transforms
Suppose we have a function $f(t)$ for $t \in \mathcal{D}$.
We define the transform function $\hat{f}(s)$ as:

$$
\hat{f}(s)=\int_{\mathcal{D}} K(s, t) f(t) \mathrm{d} t
$$

where $K(s, t)$ is called the kernel of the transform.

Integral Transforms in General

The LT is one of a large family of integral transforms
Suppose we have a function $f(t)$ for $t \in \mathcal{D}$.
We define the transform function $\hat{f}(s)$ as:

$$
\hat{f}(s)=\int_{\mathcal{D}} K(s, t) f(t) \mathrm{d} t
$$

where $K(s, t)$ is called the kernel of the transform.
For example, the Fourier transform is

$$
\tilde{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) \mathrm{d} t
$$

Integral Transforms in General

The LT is one of a large family of integral transforms
Suppose we have a function $f(t)$ for $t \in \mathcal{D}$.
We define the transform function $\hat{f}(s)$ as:

$$
\hat{f}(s)=\int_{\mathcal{D}} K(s, t) f(t) \mathrm{d} t
$$

where $K(s, t)$ is called the kernel of the transform.
For example, the Fourier transform is

$$
\tilde{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) \mathrm{d} t
$$

The Hilbert transform is another . . . and many more.

The Laplace Transform: Definition

For a function of time $f(t), t \geq 0$, the LT is defined as

$$
\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Here, s is complex and $\hat{f}(s)$ is a complex function of s.

The Laplace Transform: Definition

For a function of time $f(t), t \geq 0$, the LT is defined as

$$
\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Here, s is complex and $\hat{f}(s)$ is a complex function of s.

- The domain of the function $f(t)$ is $\mathcal{D}=[0,+\infty)$.

The Laplace Transform: Definition

For a function of time $f(t), t \geq 0$, the LT is defined as

$$
\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t .
$$

Here, s is complex and $\hat{f}(s)$ is a complex function of s.

- The domain of the function $f(t)$ is $\mathcal{D}=[0,+\infty)$.
- The kernel of the transform is $K(s, t)=\exp (-s t)$.

The Laplace Transform: Definition

For a function of time $f(t), t \geq 0$, the LT is defined as

$$
\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Here, s is complex and $\hat{f}(s)$ is a complex function of s.

- The domain of the function $f(t)$ is $\mathcal{D}=[0,+\infty)$.
- The kernel of the transform is $K(s, t)=\exp (-s t)$.
- The domain of the LT $\hat{f}(s)$ is the complex s-plane.

Recovering the Original Function

The recovery of the original function $f(t)$ from the transformed function $\hat{f}(s)$ is called inversion.

Recovering the Original Function

The recovery of the original function $f(t)$ from the transformed function $\hat{f}(s)$ is called inversion.

Recall that, for the Fourier transform, we have

$$
\tilde{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) \mathrm{d} t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{+i \omega t} \tilde{f}(\omega) \mathrm{d} \omega
$$

Recovering the Original Function

The recovery of the original function $f(t)$ from the transformed function $\hat{f}(s)$ is called inversion.

Recall that, for the Fourier transform, we have

$$
\tilde{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) \mathrm{d} t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{+i \omega t} \tilde{f}(\omega) \mathrm{d} \omega
$$

Analogously, for the LT, the inversion is an integral of $\hat{f}(s)$ multiplied by a kernel function ...
... but now the integral is taken over a contour in the complex s-plane.

Contour for inversion of Laplace Transform

For the LT, the inversion formula is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s .
$$

where \mathcal{C}_{1} is a contour in the s-plane:

For the LT, the inversion formula is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s
$$

where \mathcal{C}_{1} is a contour in the s-plane:
$-\mathcal{C}_{1}$ is parallel to the imaginary axis.

For the LT, the inversion formula is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s
$$

where \mathcal{C}_{1} is a contour in the s-plane:
$-\mathcal{C}_{1}$ is parallel to the imaginary axis.

- \mathcal{C}_{1} is to the right of all singularities of $\hat{f}(s)$.

For the LT, the inversion formula is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s
$$

where \mathcal{C}_{1} is a contour in the s-plane:
$\triangleright \mathcal{C}_{1}$ is parallel to the imaginary axis.

- \mathcal{C}_{1} is to the right of all singularities of $\hat{f}(s)$.

For the functions that we consider, the singularities are poles on the imaginary axis.

Thus, the contour \mathcal{C}_{1} must be in the right half-plane.

The LT is a linear operator

$$
\mathcal{L}\{f(t)\}=\hat{f}(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Therefore

$$
\mathcal{L}\{\alpha f(t)\}=\int_{0}^{\infty} e^{-s t}[\alpha f(t)] \mathrm{d} t=\alpha \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t=\alpha \mathcal{L}\{f(t)\}
$$

The LT is a linear operator

$$
\mathcal{L}\{f(t)\}=\hat{f}(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Therefore
$\mathcal{L}\{\alpha f(t)\}=\int_{0}^{\infty} e^{-s t}[\alpha f(t)] \mathrm{d} t=\alpha \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t=\alpha \mathcal{L}\{f(t)\}$.

Also

$$
\mathcal{L}\{f(t)+g(t)\}=\int_{0}^{\infty} e^{-s t}[f(t)+g(t)] \mathrm{d} t=\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\} .
$$

The LT is a linear operator

$$
\mathcal{L}\{f(t)\}=\hat{f}(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t
$$

Therefore
$\mathcal{L}\{\alpha f(t)\}=\int_{0}^{\infty} e^{-s t}[\alpha f(t)] \mathrm{d} t=\alpha \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t=\alpha \mathcal{L}\{f(t)\}$.
Also
$\mathcal{L}\{f(t)+g(t)\}=\int_{0}^{\infty} e^{-s t}[f(t)+g(t)] \mathrm{d} t=\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\}$.
More generally,

$$
\mathcal{L}\left\{\sum_{n=1}^{N} w_{n} f_{n}(t)\right\}=\sum_{n=1}^{N} w_{n} \mathcal{L}\left\{f_{n}(t)\right\} .
$$

Basic Properties of the LT

$$
-\mathcal{L}\{a\}=\frac{a}{s}
$$

(a constant)

Basic Properties of the LT

- $\mathcal{L}\{a\}=\frac{a}{s} \quad$ (a constant)
- $\mathcal{L}\{\exp (a t)\}=\frac{1}{s-a} \quad$ (pole at $s=a$ on real axis)

Basic Properties of the LT

- $\mathcal{L}\{a\}=\frac{a}{s} \quad$ (a constant)
- $\mathcal{L}\{\exp (a t)\}=\frac{1}{s-a}$
- $\mathcal{L}\{\exp (i \omega t)\}=\frac{1}{s-i \omega}$

(pole at $s=a$ on real axis)

(pole on imaginary axis)

Basic Properties of the LT

- $\mathcal{L}\{a\}=\frac{a}{s} \quad$ (a constant)
- $\mathcal{L}\{\exp (a t)\}=\frac{1}{s-a} \quad$ (pole at $s=a$ on real axis)
- $\mathcal{L}\{\exp (i \omega t)\}=\frac{1}{s-i \omega}$
(pole on imaginary axis)
$>\mathcal{L}\{\sin a t\}=\frac{a}{s^{2}+a^{2}} \quad \mathcal{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$

Basic Properties of the LT

- $\mathcal{L}\{a\}=\frac{a}{s} \quad$ (a constant)
- $\mathcal{L}\{\exp (a t)\}=\frac{1}{s-a} \quad$ (pole at $s=a$ on real axis)
- $\mathcal{L}\{\exp (i \omega t)\}=\frac{1}{s-i \omega}$
(pole on imaginary axis)
- $\mathcal{L}\{\sin a t\}=\frac{a}{s^{2}+a^{2}} \quad \mathcal{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$
$\triangleright \mathcal{L}\left\{\frac{\mathrm{d} f}{\mathrm{~d} t}\right\}=s \hat{f}(s)-f(0)$

Basic Properties of the LT

$$
\begin{aligned}
& \text { - } \mathcal{L}\{a\}=\frac{a}{s} \quad \text { (a constant) } \\
& \text { - } \mathcal{L}\{\exp (a t)\}=\frac{1}{s-a} \quad \text { (pole at } s=a \text { on real axis) } \\
& \text { - } \mathcal{L}\{\exp (i \omega t)\}=\frac{1}{s-i \omega} \quad \text { (pole on imaginary axis) } \\
& \text { - } \mathcal{L}\{\sin a t\}=\frac{a}{s^{2}+a^{2}} \quad \mathcal{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}} \\
& \text { - } \mathcal{L}\left\{\frac{\mathrm{d} f}{\mathrm{~d} t}\right\}=s \hat{f}(s)-f(0)
\end{aligned}
$$

Exercise: Prove these results, using the definition of the Laplace transform $\mathcal{L}\{f(t)\}$.

Outline

Basic Theory

Residue Theorem

Numerical Inversion

Ordinary Differential Equations

Appolicaition to NWP

Kelvin Waves \& Phase Errors
Lagrangian Formulation

Residue Theorem: Refresher

Suppose $f(z)$ is analytic inside a circle \mathcal{C} except for a simple pole at the centre a of \mathcal{C}.

Residue Theorem: Refresher

Suppose $f(z)$ is analytic inside a circle \mathcal{C} except for a simple pole at the centre a of \mathcal{C}.

For example, $f(z)$ might be of the form

$$
f(z)=\frac{\varrho}{z-a}+g(z)
$$

where $g(z)$ is analytic inside \mathcal{C}.

Residue Theorem: Refresher

Suppose $f(z)$ is analytic inside a circle \mathcal{C} except for a simple pole at the centre a of \mathcal{C}.

For example, $f(z)$ might be of the form

$$
f(z)=\frac{\varrho}{z-a}+g(z)
$$

where $g(z)$ is analytic inside \mathcal{C}.
The residue of $f(z)$ at $z=a$ is computed as

$$
\lim _{z \rightarrow a}(z-a) f(z)=\varrho
$$

By Cauchy's Integral Formula,

$$
\oint_{\mathcal{C}} g(z) \mathrm{d} z=0 \quad \text { and } \quad \oint_{\mathcal{C}} \frac{\varrho}{z-a} \mathrm{~d} z=2 \pi i \varrho .
$$

By Cauchy's Integral Formula,

$$
\oint_{\mathcal{C}} g(z) \mathrm{d} z=0 \quad \text { and } \quad \oint_{\mathcal{C}} \frac{\varrho}{z-a} \mathrm{~d} z=2 \pi i \varrho .
$$

Therefore,

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=2 \pi i \varrho=2 \pi i[\text { Residue of } f(z) \text { at } a]
$$

By Cauchy's Integral Formula,

$$
\oint_{\mathcal{C}} g(z) \mathrm{d} z=0 \quad \text { and } \quad \oint_{\mathcal{C}} \frac{\varrho}{z-a} \mathrm{~d} z=2 \pi i \varrho .
$$

Therefore,

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=2 \pi i \varrho=2 \pi i[\text { Residue of } f(z) \text { at } a]
$$

More generally, if there are several poles within \mathcal{C},
$\oint_{\mathcal{C}} f(z) \mathrm{d} z=2 \pi i[$ Sum of residues of $f(z)$ within $\mathcal{C}]$.

A Simple Oscillation

Let $f(t)$ have a single harmonic component

$$
f(t)=\alpha \exp (i \omega t)
$$

A Simple Oscillation

Let $f(t)$ have a single harmonic component

$$
f(t)=\alpha \exp (i \omega t)
$$

The LT of $f(t)$ has a simple pole at $s=i \omega$:

$$
\hat{f}(s)=\frac{\alpha}{s-i \omega},
$$

A Simple Oscillation

Let $f(t)$ have a single harmonic component

$$
f(t)=\alpha \exp (i \omega t)
$$

The LT of $f(t)$ has a simple pole at $s=i \omega$:

$$
\hat{f}(s)=\frac{\alpha}{s-i \omega},
$$

A pure oscillation in time transforms to a holomorphic function, with a single pole.

A Simple Oscillation

Let $f(t)$ have a single harmonic component

$$
f(t)=\alpha \exp (i \omega t)
$$

The LT of $f(t)$ has a simple pole at $s=i \omega$:

$$
\hat{f}(s)=\frac{\alpha}{s-i \omega},
$$

A pure oscillation in time transforms to a holomorphic function, with a single pole.

The frequency of the oscillation determines the position of the pole.

LF and HF oscillations and their transforms

Again

$$
\hat{f}(s)=\mathcal{L}\{\alpha \exp (i \omega t)\}=\frac{\alpha}{s-i \omega} .
$$

Again

$$
\hat{f}(s)=\mathcal{L}\{\alpha \exp (i \omega t)\}=\frac{\alpha}{s-i \omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s .
$$

Again

$$
\hat{f}(s)=\mathcal{L}\{\alpha \exp (i \omega t)\}=\frac{\alpha}{s-i \omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s .
$$

We augment \mathcal{C}_{1} by a semi-circular $\operatorname{arc} \mathcal{C}_{2}$ in the left half-plane. Denote the resulting closed contour by

$$
\mathcal{C}_{0}=\mathcal{C}_{1} \cup \mathcal{C}_{2} .
$$

Again

$$
\hat{f}(s)=\mathcal{L}\{\alpha \exp (i \omega t)\}=\frac{\alpha}{s-i \omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s .
$$

We augment \mathcal{C}_{1} by a semi-circular $\operatorname{arc} \mathcal{C}_{2}$ in the left half-plane. Denote the resulting closed contour by

$$
\mathcal{C}_{0}=\mathcal{C}_{1} \cup \mathcal{C}_{2} .
$$

In cases of interest, we can show that this leaves the value of the integral unchanged (see Doetsch, 1977).

Again

$$
\hat{f}(s)=\mathcal{L}\{\alpha \exp (i \omega t)\}=\frac{\alpha}{s-i \omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
f(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} e^{s t} \hat{f}(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s .
$$

We augment \mathcal{C}_{1} by a semi-circular $\operatorname{arc} \mathcal{C}_{2}$ in the left half-plane. Denote the resulting closed contour by

$$
\mathcal{C}_{0}=\mathcal{C}_{1} \cup \mathcal{C}_{2} .
$$

In cases of interest, we can show that this leaves the value of the integral unchanged (see Doetsch, 1977).

Then $f(t)$ is an integral around a closed contour \mathcal{C}_{0}.

Closed Contour

Contribution from \mathcal{C}_{2} vanishes in limit of infinite radius

For an integral around a closed contour,

$$
f(t)=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s,
$$

we can apply the residue theorem:

For an integral around a closed contour,

$$
f(t)=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{\alpha \exp (s t)}{s-i \omega} \mathrm{~d} s,
$$

we can apply the residue theorem:

$$
f(t)=\sum_{\mathcal{C}_{0}}\left[\text { Residues of }\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)\right]
$$

so $f(t)$ is the sum of the residues of the integrand within the contour \mathcal{C}_{0}.

Residue Theorem

$$
\frac{1}{(z 2 p i i)} \oint_{b} f(z) d z=\left[\begin{array}{l}
\text { Sum of Residues of } \\
f(z) \text { at poles within } b
\end{array}\right]
$$

Again

$$
f(t)=\sum_{c_{0}}\left[\text { Residues of }\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)\right]
$$

Again

$$
f(t)=\sum_{c_{0}}\left[\text { Residues of }\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)\right]
$$

There is just one pole, at $s=i \omega$. The residue is

$$
\lim _{s \rightarrow i \omega}(s-i \omega)\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)=\alpha \exp (i \omega t)
$$

Again

$$
f(t)=\sum_{c_{0}}\left[\text { Residues of }\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)\right]
$$

There is just one pole, at $s=i \omega$. The residue is

$$
\lim _{s \rightarrow i \omega}(s-i \omega)\left(\frac{\alpha \exp (s t)}{s-i \omega}\right)=\alpha \exp (i \omega t)
$$

So we recover the input function:

$$
f(t)=\alpha \exp (i \omega t)
$$

A Two-Component Oscillation

Let $f(t)$ have two harmonic components

$$
f(t)=\operatorname{aexp}(i \omega t)+A \exp (i \Omega t) \quad|\omega| \ll|\Omega|
$$

A Two-Component Oscillation

Let $f(t)$ have two harmonic components

$$
f(t)=\operatorname{aexp}(i \omega t)+A \exp (i \Omega t) \quad|\omega| \ll|\Omega|
$$

The LT is a linear operator, so the transform of $f(t)$ is

$$
\hat{f}(s)=\frac{a}{s-i \omega}+\frac{A}{s-i \Omega},
$$

which has two simple poles, at $s=i \omega$ and $s=i \Omega$.

A Two-Component Oscillation

Let $f(t)$ have two harmonic components

$$
f(t)=\operatorname{aexp}(i \omega t)+A \exp (i \Omega t) \quad|\omega| \ll|\Omega|
$$

The LT is a linear operator, so the transform of $f(t)$ is

$$
\hat{f}(s)=\frac{a}{s-i \omega}+\frac{A}{s-i \Omega},
$$

which has two simple poles, at $s=i \omega$ and $s=i \Omega$.

- The LF pole, at $s=i \omega$, is close to the origin.
- The HF pole, at $s=i \Omega$, is far from the origin.

Again

$$
\hat{f}(s)=\frac{a}{s-i \omega}+\frac{A}{s-i \Omega} .
$$

Again

$$
\hat{f}(s)=\frac{a}{s-i \omega}+\frac{A}{s-i \Omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
\begin{aligned}
f(t) & =\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{a \exp (s t)}{s-i \omega} \mathrm{~d} s+\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{A \exp (s t)}{s-i \Omega} \mathrm{~d} s \\
& =\quad a \exp (i \omega t)+\quad A \exp (i \Omega t) .
\end{aligned}
$$

Again

$$
\hat{f}(s)=\frac{a}{s-i \omega}+\frac{A}{s-i \Omega} .
$$

The inverse transform of $\hat{f}(s)$ is

$$
\begin{aligned}
f(t) & =\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{a \exp (s t)}{s-i \omega} \mathrm{~d} s+\frac{1}{2 \pi i} \oint_{\mathcal{C}_{0}} \frac{A \exp (s t)}{s-i \Omega} \mathrm{~d} s \\
& =\quad a \exp (i \omega t)+\quad A \exp (i \Omega t) .
\end{aligned}
$$

We now replace \mathcal{C}_{0} by a circular contour \mathcal{C}^{\star} centred at the origin, with radius γ such that $|\omega|<\gamma<|\Omega|$.

Again: We replace \mathcal{C}_{0} by \mathcal{C}^{\star} with $|\omega|<\gamma<|\Omega|$.

Again: We replace \mathcal{C}_{0} by \mathcal{C}^{\star} with $|\omega|<\gamma<|\Omega|$.

 We denote the modified operator by \mathcal{L}^{\star}.Again: We replace \mathcal{C}_{0} by \mathcal{C}^{\star} with $|\omega|<\gamma<|\Omega|$.
We denote the modified operator by \mathcal{L}^{\star}.
Since the pole $s=i \omega$ falls within the contour \mathcal{C}^{\star}, it contributes to the integral.

Since the pole $s=i \Omega$ falls outside the contour \mathcal{C}^{\star}, it makes no contribution.

Again: We replace \mathcal{C}_{0} by \mathcal{C}^{\star} with $|\omega|<\gamma<|\Omega|$.
We denote the modified operator by \mathcal{L}^{\star}.
Since the pole $s=i \omega$ falls within the contour \mathcal{C}^{\star}, it contributes to the integral.

Since the pole $s=i \Omega$ falls outside the contour \mathcal{C}^{\star}, it makes no contribution.

Therefore,

$$
f^{\star}(t) \equiv \mathcal{L}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \oint_{\mathcal{C}^{\star}} \frac{a \exp (s t)}{s-i \omega} \mathrm{~d} s=a \exp (i \omega t) .
$$

Again: We replace \mathcal{C}_{0} by \mathcal{C}^{\star} with $|\omega|<\gamma<|\Omega|$.
We denote the modified operator by \mathcal{L}^{\star}.
Since the pole $s=i \omega$ falls within the contour \mathcal{C}^{\star}, it contributes to the integral.

Since the pole $s=i \Omega$ falls outside the contour \mathcal{C}^{\star}, it makes no contribution.

Therefore,

$$
f^{\star}(t) \equiv \mathcal{L}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \oint_{\mathcal{C}^{\star}} \frac{a \exp (s t)}{s-i \omega} \mathrm{~d} s=a \exp (i \omega t) .
$$

We have filtered $f(t)$: the function $f^{\star}(t)$ is the LF component of $f(t)$. The HF component is gone.

Exercise

Consider the test function

$$
f(t)=\alpha_{1} \cos \left(\omega_{1} t-\psi_{1}\right)+\alpha_{2} \cos \left(\omega_{2} t-\psi_{2}\right) \quad\left|\omega_{1}\right|<\left|\omega_{2}\right|
$$

Exercise

Consider the test function

$$
f(t)=\alpha_{1} \cos \left(\omega_{1} t-\psi_{1}\right)+\alpha_{2} \cos \left(\omega_{2} t-\psi_{2}\right) \quad\left|\omega_{1}\right|<\left|\omega_{2}\right|
$$

Show that the LT is

$$
\hat{f}(s)=\frac{\alpha_{1}}{2}\left[\frac{e^{-i \psi_{1}}}{s-i \omega_{1}}+\frac{e^{i \psi_{1}}}{s+i \omega_{1}}\right]+\frac{\alpha_{2}}{2}\left[\frac{e^{-i \psi_{2}}}{s-i \omega_{2}}+\frac{e^{i \psi_{2}}}{s+i \omega_{2}}\right]
$$

Exercise

Consider the test function

$$
f(t)=\alpha_{1} \cos \left(\omega_{1} t-\psi_{1}\right)+\alpha_{2} \cos \left(\omega_{2} t-\psi_{2}\right) \quad\left|\omega_{1}\right|<\left|\omega_{2}\right|
$$

Show that the LT is

$$
\hat{f}(s)=\frac{\alpha_{1}}{2}\left[\frac{e^{-i \psi_{1}}}{s-i \omega_{1}}+\frac{e^{i \psi_{1}}}{s+i \omega_{1}}\right]+\frac{\alpha_{2}}{2}\left[\frac{e^{-i \psi_{2}}}{s-i \omega_{2}}+\frac{e^{i \psi_{2}}}{s+i \omega_{2}}\right]
$$

Show how, by choosing \mathcal{C}^{\star} with $\left|\omega_{1}\right|<\gamma<\left|\omega_{2}\right|$, the HF component can be eliminated.

Outline

Basic Theory
 Residue Theorem

Numerical Inversion

Ordinary Differential Equations
Application to NWP
Kelvin Waves \& Phase Errors

Lagrangian Formulation

Approximating the Contour \mathcal{C}^{\star}

We have to compute a contour integral around the circular contour \mathcal{C}^{\star} in the s-plane.

Approximating the Contour \mathcal{C}^{\star}

We have to compute a contour integral around the circular contour \mathcal{C}^{\star} in the s-plane.

This is done numerically, by replacing the circle \mathcal{C}^{\star} by an N-sided polygon or N -gon $\mathcal{C}_{\mathrm{N}}^{\star}$.

Approximating the Contour \mathcal{C}^{\star}

We have to compute a contour integral around the circular contour \mathcal{C}^{\star} in the s-plane.

This is done numerically, by replacing the circle \mathcal{C}^{\star} by an N-sided polygon or N -gon \mathcal{C}_{N}^{\star}.

For $n=1,2, \ldots, N$:

- The lengths of the edges are Δs_{n}
- the midpoints are labelled s_{n}

The integrand is evaluated at the centre of each edge, and the integral is computed numerically.

We compute a numerical approximation: the inverse

$$
\mathcal{L}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \oint_{\mathcal{C}^{\star}} \exp (s t) \hat{f}(s) \mathrm{d} s
$$

is approximated by the summation

$$
\mathcal{L}_{N}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \sum_{n=1}^{N} \exp \left(s_{n} t\right) \hat{f}\left(s_{n}\right) \Delta s_{n}
$$

We compute a numerical approximation: the inverse

$$
\mathcal{L}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \oint_{\mathcal{C}^{\star}} \exp (s t) \hat{f}(s) \mathrm{d} s
$$

is approximated by the summation

$$
\mathcal{L}_{N}^{\star}\{\hat{f}(s)\}=\frac{1}{2 \pi i} \sum_{n=1}^{N} \exp \left(s_{n} t\right) \hat{f}\left(s_{n}\right) \Delta s_{n}
$$

We introduce a correction factor, and arrive at:

$$
\mathcal{L}_{N}^{\star}\{\hat{f}(s)\}=\frac{1}{N} \sum_{n=1}^{N} \exp _{N}\left(s_{n} t\right) \hat{f}\left(s_{n}\right) s_{n}
$$

Here $\exp _{N}(z)$ is the N-term Taylor expansion of $\exp (z)$ (For details, see Clancy and Lynch, 2011a)

Outline

Basic Theory
 Residue Theorem
 Numerical Inversion

Ordinary Differential Equations

Application to NWP

Kelvin Waves \& Phase Errors
Lagrangian Formuiaiton
\square

Applying LT to an ODE

We consider a nonlinear ordinary differential equation

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+i w w+n(w)=0 \quad w(0)=w_{0}
$$

Applying LT to an ODE

We consider a nonlinear ordinary differential equation

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+i w w+n(w)=0 \quad w(0)=w_{0}
$$

The LT of the equation is

$$
\left(s \hat{w}-w_{0}\right)+i \omega \hat{w}+\frac{n_{0}}{s}=0 .
$$

We have frozen $n(w)$ at its initial value $n_{0}=n\left(w_{0}\right)$.

Applying LT to an ODE

We consider a nonlinear ordinary differential equation

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+i w w+n(w)=0 \quad w(0)=w_{0}
$$

The LT of the equation is

$$
\left(s \hat{w}-w_{0}\right)+i \omega \hat{w}+\frac{n_{0}}{s}=0 .
$$

We have frozen $n(w)$ at its initial value $n_{0}=n\left(w_{0}\right)$.
We can immediately solve for the transform solution:

$$
\hat{w}(s)=\frac{1}{s+i \omega}\left[w_{0}-\frac{n_{0}}{s}\right]
$$

Using partial fractions, we write the transform as

$$
\hat{w}(s)=\left(\frac{w_{0}}{s+i \omega}\right)+\frac{n_{0}}{i \omega}\left(\frac{1}{s+i \omega}-\frac{1}{s}\right)
$$

There are two poles, at $s=-i \omega$ and at $s=0$.

Using partial fractions, we write the transform as

$$
\hat{w}(s)=\left(\frac{w_{0}}{s+i \omega}\right)+\frac{n_{0}}{i \omega}\left(\frac{1}{s+i \omega}-\frac{1}{s}\right)
$$

There are two poles, at $s=-i \omega$ and at $s=0$.
The pole at $s=0$ always falls within the contour \mathcal{C}^{\star}. The pole at $s=-i \omega$ may or may not fall within \mathcal{C}^{\star}.

Using partial fractions, we write the transform as

$$
\hat{w}(s)=\left(\frac{w_{0}}{s+i \omega}\right)+\frac{n_{0}}{i \omega}\left(\frac{1}{s+i \omega}-\frac{1}{s}\right)
$$

There are two poles, at $s=-i \omega$ and at $s=0$.
The pole at $s=0$ always falls within the contour \mathcal{C}^{\star}. The pole at $s=-i \omega$ may or may not fall within \mathcal{C}^{\star}.

Thus, the solution is

$$
w^{\star}(t)=\left\{\begin{array}{ccc}
\left(w_{0}+\frac{n_{0}}{i \omega}\right) \exp (-i \omega t)-\frac{n_{0}}{i \omega} & : \quad|\omega|<\gamma \\
-\frac{n_{0}}{i \omega} & : \quad|\omega|>\gamma
\end{array}\right.
$$

Again,

$$
w^{\star}(t)=\left\{\begin{array}{ccc}
\left(w_{0}+\frac{n_{0}}{i \omega}\right) \exp (-i \omega t)-\frac{n_{0}}{i \omega} & : \quad|\omega|<\gamma \\
-\frac{n_{0}}{i \omega} & : \quad|\omega|>\gamma
\end{array}\right.
$$

Again,

$$
w^{\star}(t)=\left\{\begin{array}{ccc}
\left(w_{0}+\frac{n_{0}}{i \omega}\right) \exp (-i \omega t)-\frac{n_{0}}{i \omega} & : \quad|\omega|<\gamma \\
-\frac{n_{0}}{i \omega} & : \quad|\omega|>\gamma
\end{array}\right.
$$

So we see that, for a LF oscillation $(|\omega|<\gamma)$, the solution $w^{\star}(t)$ is the full solution $w(t)$ of the ODE.

Again,

$$
w^{\star}(t)=\left\{\begin{array}{ccc}
\left(w_{0}+\frac{n_{0}}{i \omega}\right) \exp (-i \omega t)-\frac{n_{0}}{i \omega} & : \quad|\omega|<\gamma \\
-\frac{n_{0}}{i \omega} & : \quad|\omega|>\gamma
\end{array}\right.
$$

So we see that, for a LF oscillation $(|\omega|<\gamma)$, the solution $w^{\star}(t)$ is the full solution $w(t)$ of the ODE.

For a HF oscillation ($|\omega|>\gamma$), the solution contains only a constant term.

Again,

$$
w^{\star}(t)=\left\{\begin{array}{ccc}
\left(w_{0}+\frac{n_{0}}{i \omega}\right) & \exp (-i \omega t)-\frac{n_{0}}{i \omega} & : \quad|\omega|<\gamma \\
-\frac{n_{0}}{i \omega} & : \quad|\omega|>\gamma
\end{array}\right.
$$

So we see that, for a LF oscillation $(|\omega|<\gamma)$, the solution $w^{\star}(t)$ is the full solution $w(t)$ of the ODE.

For a HF oscillation ($|\omega|>\gamma$), the solution contains only a constant term.

Thus, high frequencies are filtered out.

Again, for a HF oscillation $(|\omega|>\gamma)$, the solution is

$$
w^{\star}(t)=-\frac{n_{0}}{i \omega}
$$

or

$$
i \omega w^{\star}(t)+n_{0}=0
$$

Again, for a HF oscillation $(|\omega|>\gamma)$, the solution is

$$
w^{\star}(t)=-\frac{n_{0}}{i \omega}
$$

or

$$
i \omega w^{\star}(t)+n_{0}=0
$$

This results from dropping the time derivative in

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+i w w+n(w)=0
$$

and holding the nonlinear term at its initial value.

Again, for a HF oscillation $(|\omega|>\gamma)$, the solution is

$$
w^{\star}(t)=-\frac{n_{0}}{i \omega}
$$

or

$$
i \omega w^{\star}(t)+n_{0}=0
$$

This results from dropping the time derivative in

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+i w w+n(w)=0
$$

and holding the nonlinear term at its initial value.
Clearly, this corresponds to the criterion for nonlinear normal mode initialization:

Set the tendency of the HF terms to zero at $t=0$.

Outline

Basic Theory
 Residue Theorem
 Numerical Inversion
 Ordinary Differential Equations

Application to NWP

Kelvin Waves \& Phase Errors

Lagrangian Formulation

A General NWP Equation

We write the general NWP equations symbolically as

$$
\frac{\mathrm{d} \mathbf{X}}{\mathrm{~d} t}+i \mathbf{L} \mathbf{X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

where $\mathbf{X}(t)$ is the state vector at time t.

A General NWP Equation

We write the general NWP equations symbolically as

$$
\frac{\mathrm{d} \mathbf{X}}{\mathrm{~d} t}+i \mathbf{L} \mathbf{X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

where $\mathbf{X}(t)$ is the state vector at time t.
We apply the Laplace transform to get

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{0}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{0}=\mathbf{0}
$$

where X_{0} is the initial value of X and $N_{0}=N\left(X_{0}\right)$ is held constant at its initial value.

A General NWP Equation

We write the general NWP equations symbolically as

$$
\frac{\mathrm{d} \mathbf{X}}{\mathrm{~d} t}+i \mathbf{L} \mathbf{X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

where $\mathbf{X}(t)$ is the state vector at time t.
We apply the Laplace transform to get

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{0}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{0}=\mathbf{0}
$$

where X_{0} is the initial value of X and $N_{0}=N\left(X_{0}\right)$ is held constant at its initial value.

The frequencies are entangled. How do we proceed?

Eigenanalysis

$$
\dot{\mathbf{X}}+i \mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

Eigenanalysis

$$
\dot{\mathbf{X}}+i \mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

Assume the eigenanalysis of L is
LE = En
where $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right)$.

Eigenanalysis

$$
\dot{\mathbf{X}}+i \mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

Assume the eigenanalysis of L is

$$
\mathrm{LE}=\mathrm{E} \wedge
$$

where $\boldsymbol{\wedge}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right)$.
More explicitly, assume that the eigenfrequencies split in two:

$$
\Lambda=\left[\begin{array}{cc}
\Lambda_{Y} & 0 \\
0 & \Lambda_{Z}
\end{array}\right]
$$

Λ_{Y} : Frequencies of rotational modes (LF)
Λ_{z} : Frequencies of gravity-inertia modes (HF)

We define a new set of variables: $\mathbf{W}=\mathbf{E}^{-1} \mathbf{X}$.

We define a new set of variables: $\mathbf{W}=\mathbf{E}^{-1} \mathbf{X}$.
Multiplying the equation by E^{-1} we get

$$
\mathbf{E}^{-1} \dot{\mathbf{X}}+i \mathbf{E}^{-1} \mathbf{L}\left(\mathbf{E} \mathbf{E}^{-1}\right) \mathbf{X}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0}
$$

This is just

$$
\dot{\mathbf{W}}+i \boldsymbol{\Lambda} \mathbf{W}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0}
$$

We define a new set of variables: $\mathbf{W}=\mathbf{E}^{-1} \mathbf{X}$.
Multiplying the equation by E^{-1} we get

$$
\mathbf{E}^{-1} \dot{\mathbf{X}}+i \mathbf{E}^{-1} \mathbf{L}\left(\mathbf{E E}^{-1}\right) \mathbf{X}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0} .
$$

This is just

$$
\dot{\mathbf{W}}+i \boldsymbol{\wedge} \mathbf{W}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0}
$$

This equation separates into two sub-systems:

$$
\begin{aligned}
\dot{\mathbf{Y}}+i \boldsymbol{\Lambda}_{Y} \mathbf{Y}+\mathbf{N}_{Y}(\mathbf{Y}, \mathbf{Z}) & =\mathbf{0} \\
\dot{\mathbf{Z}}+i \boldsymbol{\Lambda}_{Z} \mathbf{Z}+\mathbf{N}_{Z}(\mathbf{Y}, \mathbf{Z}) & =\mathbf{x}
\end{aligned}
$$

where $\mathbf{W}=(\mathbf{Y}, \mathbf{Z})^{\mathrm{T}}$.

We define a new set of variables: $\mathbf{W}=\mathbf{E}^{-1} \mathbf{X}$.
Multiplying the equation by E^{-1} we get

$$
\mathbf{E}^{-1} \dot{\mathbf{X}}+i \mathbf{E}^{-1} \mathbf{L}\left(\mathbf{E} \mathbf{E}^{-1}\right) \mathbf{X}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0} .
$$

This is just

$$
\dot{\mathbf{W}}+i \mathbf{\Lambda} \mathbf{W}+\mathbf{E}^{-1} \mathbf{N}(\mathbf{X})=\mathbf{0}
$$

This equation separates into two sub-systems:

$$
\begin{aligned}
& \dot{\mathbf{Y}}+i \boldsymbol{\Lambda}_{Y} \mathbf{Y}+\mathbf{N}_{Y}(\mathbf{Y}, \mathbf{Z})=\mathbf{0} \\
& \dot{\mathbf{Z}}+i \boldsymbol{\Lambda}_{Z} \mathbf{Z}+\mathbf{N}_{Z}(\mathbf{Y}, \mathbf{Z})=\mathbf{0}
\end{aligned}
$$

where $\mathbf{W}=(\mathbf{Y}, \mathbf{Z})^{\mathrm{T}}$.
The variables Y and Z are all coupled through the nonlinear terms $\mathbf{N}_{Y}(\mathbf{Y}, \mathbf{Z})$ and $\mathbf{N}_{Z}(\mathbf{Y}, \mathbf{Z})$.

General Solution Method

We recall that the Laplace transform of the equation is

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{0}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{0}=\mathbf{0}
$$

where X_{0} is the initial value of X and $N_{0}=N\left(X_{0}\right)$ is held constant at its initial value.

General Solution Method

We recall that the Laplace transform of the equation is

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{0}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{0}=\mathbf{0}
$$

where X_{0} is the initial value of X and $N_{0}=N\left(X_{0}\right)$ is held constant at its initial value.

But now we take $n \Delta t$ to be the initial time:

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}^{n}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}^{n}=\mathbf{0}
$$

General Solution Method

We recall that the Laplace transform of the equation is

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{0}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{0}=\mathbf{0}
$$

where X_{0} is the initial value of X and $N_{0}=N\left(X_{0}\right)$ is held constant at its initial value.

But now we take $n \Delta t$ to be the initial time:

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}^{n}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}^{n}=\mathbf{0}
$$

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}^{n}-\frac{1}{s} \mathbf{N}^{n}\right]
$$

Again,

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}^{n}-\frac{1}{s} \mathbf{N}^{n}\right]
$$

Again,

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}^{n}-\frac{1}{s} \mathbf{N}^{n}\right]
$$

We recover the filtered solution at time $(n+1) \Delta t$ by applying \mathcal{L}^{*} at time Δt beyond the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

Again,

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}^{n}-\frac{1}{s} \mathbf{N}^{n}\right]
$$

We recover the filtered solution at time $(n+1) \Delta t$ by applying \mathcal{L}^{*} at time Δt beyond the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

The procedure may now be iterated to produce a forecast of any length.

Again,

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}^{n}-\frac{1}{s} \mathbf{N}^{n}\right]
$$

We recover the filtered solution at time $(n+1) \Delta t$ by applying \mathcal{L}^{*} at time Δt beyond the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

The procedure may now be iterated to produce a forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b

Laplace transform integration of the shallow water equations. Part 1: Eulerian formulation and Kelvin waves

Colm Clancy* and Peter Lynch

School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland
*Correspondence to: School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland. E-mail: Colm.Clancy@ucd.ie

Laplace transform integration of the shallow water equations.
Part 2: Lagrangian formulation and orographic resonance

Colm Clancy * and Peter Lynch
School of Mathematical Sciences, UCD, Belfield, Dublin 4, Ireland
*Correspondence to: School of Mathematical Sciences, UCD, Belfield, Dublin 4. Ireland. E-mail: Colm.Clancy@ucd.ie

Outline

Basic Theory
 Residue Theorem
 Numerical Inversion

Ordinary Differential Equations
Application to NWP
Kelvin Waves \& Phase Errors

Lagrangian Formulation

Nowr

Phase Errors of SI and LT Schemes

Consider the phase error of the oscillation equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+i \omega u=0 \quad R=\frac{\text { Numerical frequency }}{\text { Physical frequency }}
$$

Phase Errors of SI and LT Schemes

Consider the phase error of the oscillation equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+i \omega u=0 \quad R=\frac{\text { Numerical frequency }}{\text { Physical frequency }}
$$

For the semi-implicit (SI) scheme, the error is

$$
R_{\mathrm{SI}}=1-\frac{1}{12}(\omega \Delta t)^{2}
$$

Phase Errors of SI and LT Schemes

Consider the phase error of the oscillation equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+i \omega u=0 \quad R=\frac{\text { Numerical frequency }}{\text { Physical frequency }}
$$

For the semi-implicit (SI) scheme, the error is

$$
R_{\mathrm{SI}}=1-\frac{1}{12}(\omega \Delta t)^{2}
$$

For the LT scheme, the corresponding error is

$$
R_{\mathrm{LT}}=1-\frac{1}{N!}(\omega \Delta t)^{N}
$$

Even for modest values of N, this is negligible.

Relative phase errors for semi-implicit (SI) and Laplace transform (LT) schemes for Kelvin waves $m=1$ and $m=5$.

Hourly height at $0.0^{\circ} \mathrm{E}, 0.9^{\circ} \mathbf{N}$ over 10 hours, with $\tau_{c}=3 \mathbf{h}$.

Outline

Basic Theory
Restadue Therom
Numerical Inversion
Ordinary Difierential Equations
Application to NWP
Keivin Weves \& Phase Errors
Lagrangian Formulation

Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

The general form of the equation is

$$
\frac{\mathrm{D} \mathbf{X}}{\mathrm{D} t}+i \mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

where advection is now included in the time derivative.

Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

The general form of the equation is

$$
\frac{\mathrm{D} \mathbf{X}}{\mathrm{D} t}+i \mathbf{L X}+\mathbf{N}(\mathbf{X})=\mathbf{0}
$$

where advection is now included in the time derivative.

We re-define the Laplace transform to be the integral in time along the trajectory of a fluid parcel:

$$
\hat{\mathbf{X}}(s) \equiv \int_{\mathcal{T}} e^{-s t} \mathbf{X}(t) \mathrm{d} t
$$

We compute \mathcal{L} along a fluid trajectory \mathcal{T}.

We consider parcels that arrive at the gridpoints at time $(n+1) \Delta t$. They originate at locations not corresponding to gridpoints at time $n \Delta t$.

We consider parcels that arrive at the gridpoints at time $(n+1) \Delta t$. They originate at locations not corresponding to gridpoints at time $n \Delta t$.

- The value at the arrival point is $\mathrm{X}_{\mathrm{A}}^{n+1}$.
- The value at the departure point is $\mathbf{X}_{\mathrm{D}}^{n}$.

We consider parcels that arrive at the gridpoints at time $(n+1) \Delta t$. They originate at locations not corresponding to gridpoints at time $n \Delta t$.

- The value at the arrival point is $\mathrm{X}_{\mathrm{A}}^{n+1}$.
- The value at the departure point is $\mathrm{X}_{\mathrm{D}}^{n}$.

The initial values when transforming the Lagrangian time derivatives are $\mathrm{X}_{\mathrm{D}}^{n}$.

We consider parcels that arrive at the gridpoints at time $(n+1) \Delta t$. They originate at locations not corresponding to gridpoints at time $n \Delta t$.

- The value at the arrival point is $\mathrm{X}_{\mathrm{A}}^{n+1}$.
- The value at the departure point is $\mathrm{X}_{\mathrm{D}}^{n}$.

The initial values when transforming the Lagrangian time derivatives are $\mathrm{X}_{\mathrm{D}}^{n}$.

The equations thus transform to

$$
\left(s \hat{\mathbf{X}}-\mathbf{X}_{\mathrm{D}}^{n}\right)+i \mathbf{L} \hat{\mathbf{X}}+\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}=\mathbf{0}
$$

where we evaluate nonlinear terms at a mid-point, interpolated in space and extrapolated in time.

Departure point, arrival point and mid-point.

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}_{\mathrm{D}}^{n}-\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}\right]
$$

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}_{\mathrm{D}}^{n}-\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}\right]
$$

The values at the departure point and mid-point are computed by interpolation.

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}_{\mathrm{D}}^{n}-\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}\right]
$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying \mathcal{L}^{*} at time $(n+1) \Delta t$, or Δt after the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}_{\mathrm{D}}^{n}-\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}\right]
$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying \mathcal{L}^{*} at time $(n+1) \Delta t$, or Δt after the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

The procedure may now be iterated to produce a forecast of any length.

The solution can be written formally:

$$
\hat{\mathbf{X}}(s)=(s \mathbf{I}+i \mathbf{L})^{-1}\left[\mathbf{X}_{\mathrm{D}}^{n}-\frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}}\right]
$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying \mathcal{L}^{*} at time $(n+1) \Delta t$, or Δt after the initial time:

$$
\mathbf{X}^{\star}((n+1) \Delta t)=\left.\mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\right|_{t=\Delta t}
$$

The procedure may now be iterated to produce a forecast of any length.

> Further details are given in Clancy and Lynch, 2011a,b

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.

Test Case:

- Initial data: ERA-40 analysis of 12 UTC on 12th February 1979

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.

Test Case:

- Initial data: ERA-40 analysis of 12 UTC on 12th February 1979
- Used by Ritchie \& Tanguay (1996) and by Li \& Bates (1996)

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.

Test Case:

- Initial data: ERA-40 analysis of 12 UTC on 12th February 1979
- Used by Ritchie \& Tanguay (1996) and by Li \& Bates (1996)
- Running at T119 resolution

Orographic Resonance

- Spurious resonance arises from coupling the semi-Lagrangian and semi-implicit methods
- Linear analysis of orographically forced stationary waves confirms this
- This motivates an investigating of orographic resonance in a full model.

Test Case:

- Initial data: ERA-40 analysis of 12 UTC on 12th February 1979
- Used by Ritchie \& Tanguay (1996) and by Li \& Bates (1996)
- Running at T119 resolution
- Shows LT method has benefits over SI scheme.

Initial Height (m)

UCD
(IV)

SLSI: dt = 3600: Height at 24 hours

SLSI SETTLS: dt = 3600: Height at 24 hours

SLLT: $\mathbf{d t}=\mathbf{3 6 0 0}$: Height at 24 hours

Conclusion

- LT scheme effectively filters HF waves

Conclusion

- LT scheme effectively filters HF waves
- LT scheme more accurate than SI scheme

Conclusion

- LT scheme effectively filters HF waves
- LT scheme more accurate than SI scheme
- LT scheme has no orographic resonance.

Conclusion

- LT scheme effectively filters HF waves
- LT scheme more accurate than SI scheme
- LT scheme has no orographic resonance.

Next job:
Implement the LT scheme in a full baroclinic model.

Thank you

