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Integral Transforms in General
The LT is one of a large family of integral transforms

Suppose we have a function f (t) for t ∈ D.

We define the transform function f̂ (s) as:

f̂ (s) =

∫
D

K (s, t) f (t) dt

where K (s, t) is called the kernel of the transform.

For example, the Fourier transform is

f̃ (ω) =

∫ ∞
−∞

e−iωt f (t) dt

The Hilbert transform is another . . . and many more.
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The Laplace Transform: Definition

For a function of time f (t), t ≥ 0, the LT is defined as

f̂ (s) =

∫ ∞
0

e−st f (t) dt .

Here, s is complex and f̂ (s) is a complex function of s.

I The domain of the function f (t) is D = [0,+∞).
I The kernel of the transform is K (s, t) = exp(−st).
I The domain of the LT f̂ (s) is the complex s-plane.
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Recovering the Original Function

The recovery of the original function f (t) from the
transformed function f̂ (s) is called inversion.

Recall that, for the Fourier transform, we have

f̃ (ω) =

∫ ∞
−∞

e−iωt f (t) dt f (t) =
1

2π

∫ ∞
−∞

e+iωt f̃ (ω) dω

Analogously, for the LT, the inversion is an integral of
f̂ (s) multiplied by a kernel function . . .

. . . but now the integral is taken over a contour in the
complex s-plane.
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For the LT, the inversion formula is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds .

where C1 is a contour in the s-plane:

I C1 is parallel to the imaginary axis.
I C1 is to the right of all singularities of f̂ (s).

For the functions that we consider, the singularities
are poles on the imaginary axis.

Thus, the contour C1 must be in the right half-plane.

? ? ?
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The LT is a linear operator

L{f (t)} = f̂ (s) ≡
∫ ∞

0
e−st f (t) dt .

Therefore

L{αf (t)} =

∫ ∞
0

e−st [αf (t)] dt = α

∫ ∞
0

e−st f (t) dt = αL{f (t)} .

Also

L{f (t)+g(t)} =

∫ ∞
0

e−st [f (t)+g(t)] dt = L{f (t)}+L{g(t)} .

More generally,

L

{
N∑

n=1

wn fn(t)

}
=

N∑
n=1

wnL{fn(t)} .
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Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Basic Properties of the LT

I L{a} =
a
s

(a constant)

I L{exp(at)} =
1

s − a
(pole at s = a on real axis)

I L{exp(iωt)} =
1

s − iω
(pole on imaginary axis)

I L{sin at} =
a

s2 + a2 L{cos at} =
s

s2 + a2

I L
{

df
dt

}
= s f̂ (s)− f (0)

Exercise: Prove these results, using the definition of
the Laplace transform L{f (t)}.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Outline

Basic Theory

Residue Theorem

Numerical Inversion

Ordinary Differential Equations

Application to NWP

Kelvin Waves & Phase Errors

Lagrangian Formulation

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Residue Theorem: Refresher

Suppose f (z) is analytic inside a circle C except for a
simple pole at the centre a of C.

For example, f (z) might be of the form

f (z) =
%

z − a
+ g(z)

where g(z) is analytic inside C.

The residue of f (z) at z = a is computed as

lim
z−→a

(z − a) f (z) = %
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By Cauchy’s Integral Formula,∮
C

g(z) dz = 0 and
∮
C

%

z − a
dz = 2πi % .

Therefore,∮
C

f (z) dz = 2πi % = 2πi [ Residue of f (z) at a ]

More generally, if there are several poles within C,∮
C

f (z) dz = 2πi [ Sum of residues of f (z) within C ] .
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A Simple Oscillation

Let f (t) have a single harmonic component

f (t) = α exp(iωt)

The LT of f (t) has a simple pole at s = iω:

f̂ (s) =
α

s − iω
,

A pure oscillation in time transforms to a
holomorphic function, with a single pole.

The frequency of the oscillation determines the
position of the pole.
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LF and HF oscillations and their transforms
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Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.

Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.
Basic Theory Residues N-gon ODEs NWP Phase Errors Lagrange



Contribution from C2 vanishes in limit of infinite radius
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For an integral around a closed contour,

f (t) =
1

2πi

∮
C0

α exp(st)

s − iω
ds ,

we can apply the residue theorem:

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]
so f (t) is the sum of the residues of the integrand
within the contour C0.
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Again

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]

There is just one pole, at s = iω. The residue is

lim
s→iω

(s − iω)

(
α exp(st)

s − iω

)
= α exp(iωt)

So we recover the input function:

f (t) = α exp(iωt)
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A Two-Component Oscillation

Let f (t) have two harmonic components

f (t) = a exp(iωt) + A exp(iΩt) |ω| � |Ω|

The LT is a linear operator, so the transform of f (t) is

f̂ (s) =
a

s − iω
+

A
s − iΩ

,

which has two simple poles, at s = iω and s = iΩ.

I The LF pole, at s = iω, is close to the origin.
I The HF pole, at s = iΩ, is far from the origin.
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Again

f̂ (s) =
a

s − iω
+

A
s − iΩ

.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∮
C0

a exp(st)

s − iω
ds +

1
2πi

∮
C0

A exp(st)

s − iΩ
ds

= a exp(iωt) + A exp(iΩt) .

We now replace C0 by a circular contour C? centred at
the origin, with radius γ such that |ω| < γ < |Ω|.
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Again: We replace C0 by C? with |ω| < γ < |Ω|.

We denote the modified operator by L?.

Since the pole s = iω falls within the contour C?,
it contributes to the integral.

Since the pole s = iΩ falls outside the contour C?,
it makes no contribution.

Therefore,

f ?(t) ≡ L?{f̂ (s)} =
1

2πi

∮
C?

a exp(st)

s − iω
ds = a exp(iωt) .

We have filtered f (t): the function f ?(t) is the LF
component of f (t). The HF component is gone.
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Exercise

Consider the test function

f (t) = α1 cos(ω1t − ψ1) + α2 cos(ω2t − ψ2) |ω1| < |ω2|

Show that the LT is

f̂ (s) =
α1

2

[
e−iψ1

s − iω1
+

eiψ1

s + iω1

]
+
α2

2

[
e−iψ2

s − iω2
+

eiψ2

s + iω2

]

Show how, by choosing C? with |ω1| < γ < |ω2|, the HF
component can be eliminated.
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Approximating the Contour C?

We have to compute a contour integral around the
circular contour C? in the s-plane.

This is done numerically, by replacing the circle C? by
an N-sided polygon or N-gon C?N .

For n = 1,2, . . . ,N:
I The lengths of the edges are ∆sn

I the midpoints are labelled sn

The integrand is evaluated at the centre of each edge,
and the integral is computed numerically.
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We compute a numerical approximation: the inverse

L?{f̂ (s)} =
1

2πi

∮
C?

exp(st) f̂ (s) ds

is approximated by the summation

L?N{f̂ (s)} =
1

2πi

N∑
n=1

exp(snt) f̂ (sn) ∆sn

We introduce a correction factor, and arrive at:

L?N{f̂ (s)} =
1
N

N∑
n=1

expN(snt) f̂ (sn) sn

Here expN(z) is the N-term Taylor expansion of exp(z)
(For details, see Clancy and Lynch, 2011a)
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Applying LT to an ODE
We consider a nonlinear ordinary differential equation

dw
dt

+ iωw + n(w) = 0 w(0) = w0

The LT of the equation is

(sŵ − w0) + iωŵ +
n0

s
= 0 .

We have frozen n(w) at its initial value n0 = n(w0).

We can immediately solve for the transform solution:

ŵ(s) =
1

s + iω

[
w0 −

n0

s

]
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Using partial fractions, we write the transform as

ŵ(s) =

(
w0

s + iω

)
+

n0

iω

(
1

s + iω
− 1

s

)
There are two poles, at s = −iω and at s = 0.

The pole at s = 0 always falls within the contour C?.
The pole at s = −iω may or may not fall within C?.

Thus, the solution is

w?(t) =


(

w0 +
n0

iω

)
exp(−iωt)− n0

iω
: |ω| < γ

−n0

iω
: |ω| > γ
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Again,

w?(t) =


(

w0 +
n0

iω

)
exp(−iωt)− n0

iω
: |ω| < γ

−n0

iω
: |ω| > γ

So we see that, for a LF oscillation (|ω| < γ), the
solution w?(t) is the full solution w(t) of the ODE.

For a HF oscillation (|ω| > γ), the solution contains
only a constant term.

Thus, high frequencies are filtered out.
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Again, for a HF oscillation (|ω| > γ), the solution is

w?(t) = −n0

iω

or
iωw?(t) + n0 = 0

This results from dropping the time derivative in

dw
dt

+ iωw + n(w) = 0

and holding the nonlinear term at its initial value.

Clearly, this corresponds to the criterion for nonlinear
normal mode initialization:

Set the tendency of the HF terms to zero at t = 0.
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A General NWP Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

The frequencies are entangled. How do we proceed?
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Eigenanalysis

Ẋ + i LX + N(X) = 0

Assume the eigenanalysis of L is

LE = EΛ

where Λ = diag(λ1, . . . , λN) and E = (e1, . . . ,eN).

More explicitly, assume that the eigenfrequencies
split in two:

Λ =

[
ΛY 0
0 ΛZ

]
ΛY : Frequencies of rotational modes (LF)
ΛZ : Frequencies of gravity-inertia modes (HF)
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We define a new set of variables: W = E−1X.

Multiplying the equation by E−1 we get

E−1Ẋ + i E−1L(EE−1)X + E−1N(X) = 0 .

This is just
Ẇ + i ΛW + E−1N(X) = 0

This equation separates into two sub-systems:

Ẏ + i ΛY Y + NY (Y,Z) = 0
Ż + i ΛZ Z + NZ (Y,Z) = 0

where W = (Y,Z)T.

The variables Y and Z are all coupled through the
nonlinear terms NY (Y,Z) and NZ (Y,Z).
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E−1Ẋ + i E−1L(EE−1)X + E−1N(X) = 0 .

This is just
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General Solution Method
We recall that the Laplace transform of the equation is

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

But now we take n∆t to be the initial time:

(s X̂− Xn) + i LX̂ +
1
s

Nn = 0

The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn − 1

s
Nn
]
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Again,

X̂(s) = (s I + i L)−1
[
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s
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]

We recover the filtered solution at time (n + 1)∆t by
applying L? at time ∆t beyond the initial time:

X?((n + 1)∆t) = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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Phase Errors of SI and LT Schemes
Consider the phase error of the oscillation equation

du
dt

+ iω u = 0 R =
Numerical frequency
Physical frequency

For the semi-implicit (SI) scheme, the error is

RSI = 1− 1
12

(ω∆t)2

For the LT scheme, the corresponding error is

RLT = 1− 1
N!

(ω∆t)N

Even for modest values of N, this is negligible.
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Relative phase errors for semi-implicit (SI) and Laplace
transform (LT) schemes for Kelvin waves m = 1 and m = 5.
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Hourly height at 0.0◦E, 0.9◦N over 10 hours, with τc = 3 h.
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Lagrangian Formulation
We now consider how to combine the Laplace
transform approach with Lagrangian advection.

The general form of the equation is

DX
Dt

+ i LX + N(X) = 0

where advection is now included in the time
derivative.

We re-define the Laplace transform to be the integral
in time along the trajectory of a fluid parcel:

X̂(s) ≡
∫
T

e−st X(t) dt
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We compute L along a fluid trajectory T .
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We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

I The value at the arrival point is Xn+1
A .

I The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.
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Departure point, arrival point and mid-point.
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The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn

D −
1
s

N
n+

1
2

M

]

The values at the departure point and mid-point are
computed by interpolation.

We recover the filtered solution by applying L? at time
(n + 1)∆t , or ∆t after the initial time:

X?((n + 1)∆t) = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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Orographic Resonance

I Spurious resonance arises from coupling the
semi-Lagrangian and semi-implicit methods

I Linear analysis of orographically forced
stationary waves confirms this

I This motivates an investigating of
orographic resonance in a full model.

Test Case:
I Initial data: ERA-40 analysis of 12 UTC on

12th February 1979
I Used by Ritchie & Tanguay (1996) and by

Li & Bates (1996)
I Running at T119 resolution
I Shows LT method has benefits over SI scheme.
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Conclusion

I LT scheme effectively filters HF waves

I LT scheme more accurate than SI scheme
I LT scheme has no orographic resonance.

Next job:
Implement the LT scheme in a full baroclinic model.
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Thank you
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