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The Data Assimilation Problem

Suppose we are given a set of noisy observations of the
atmosphere for a time interval τ
Let γ = {x = x(t), t ∈ τ} be the trajectory in τ
We want to determine which trajectory γ fits the
observations “best”
The state estimate xa(ta) for a given time ta along the γa

solution trajectory is called the analysis for analysis time ta
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Assumptions

Divide τ into n ∆t-long observation time windows:

τj =
[
tj −∆t/2, tj + ∆t/2

]
, j = 1, . . . ,n.

An observation at time tj is a triple (yo
j ,Hj ,Rj), where yo

j is
a vector of observed values, and Hj and Rj describe the
relationship between yo

j and γ:

yo
j = Hj(γj) + εo

j ,

where γj is the part of the trajectory γ that falls into τj , εj is
a Gaussian random variable with mean 0 and covariance
matrix Rj .
We assume that the covariance between the errors of any
two observations from two different time windows is zero.
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Illustration for m=1: model with one variable

Analysis  Time

tj-1 tj tj+1 tnt1

τj

Δt

γj

x(
t)

γ

The most likely trajectory is the one that minimizes the “cost
function”

J(γ) =
n∑

j=1

[yo
j −Hj(γj)]T R−1

j [yo
j −Hj(γj)].
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Generalized Observation Operator

We wish to rewrite the cost function such that the
independent variable is not a trajectory, but the state at a
given time
For a deterministic system this can be done
Generalized observation operator, Hτn : in addition to the
spatial interpolation and the mapping of model variables
into observables, it includes the mapping in time from the
analysis time tn to the observation times in τn (This is my
terminology.)

I. Szunyogh BIRS Summer School



Extended Kalman Filter
Ensemble-Based Kalman Filters

General Formulation and Notations
Example: Hénon mapping

Sequential Formulation

      Time (t)

tj-1 tj tj+1 tnt1

x(
t)

γa

t0

xa

j

xa

xa

xa
xa

xa

n-1

0

1
j-1

xb

xb
xb

n

xb
nj+1

j

1
xb

j-1

xa
j+1

J(δxn) = (δxn)T (Pb
n)−1δxn

+ [δyo
n − Hτnδxn]T R−1

n

× [δyo
n − Hτnδxn].

Remark: All practical approaches for data assimilation in the
atmospheric sciences are based on this cost function
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Notations

The background xb
n is obtained by integrating the model from

xa
n−1:

xb
n =Mtn−1,tn (xa

n−1)

The increment is defined by the difference between the state
estimate xn and the background:

δxn = xn − xb
n

Hτn is the linearization of Hτn (xn) about δxn:

Hτn (xn) ≈ Hτn (xb
n) + Hτnδx

b
n

δyo
n is the innovation:

δyo
n = yo

n −Hτn (xb
n)

Pb
n is the background covariance matrix
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The Computation of Pb
n

Linearizing the model dynamics about xa
n−1:

Mtn−1,tn (xn−1) =Mtn−1,tn (xa
n−1) + Mtn−1,tnε

a
n−1,

where εa
n−1 is the random variable representing the analysis

error at tn−1, we obtain

Pb
n = Mtn−1,tnPa

n−1MT
tn−1,tn

If Pa
n−1 is known from the analysis process at tn−1, the

computation of Pb
n requires M integrations of the tangent-linear

model, Mtn−1,tn , where M is the dimension of the state vector of
the model (in a state-of-the-art model M ∼ 108)
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The Extended Kalman Filter (EKF)

1 xb
n =Mtn−1,tn (xa

n−1)

2 Pb
n = Mtn−1,tnPa

n−1MT
tn−1,tn

3 δxa
n = Knδyo

n
4 Pa

n = (I− KnHτn )Pb
n

The Kalman-gain matrix, Kn, can be written in a number of
alternative forms; perhaps the most practical is

Kn = Pb
nHT

τn (HτnPb
nHT

τn + Rn)−1

Forecast Step of EKF: Equations 1 and 2
State Update Step of EKF: Equation 3 and 4
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Rudolf Kalman Receives the National Medal of
Science And Technology on October 7, 2009
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Example: Hénon mapping

Problem: Derive the equations of the Extended Kalman Filter
for the Hénon mapping for the case, in which the two
components of the state vector are directly observed at each
iteration step of the mapping.

The equations of the Hénon mapping are

xj+1 = 1 + yj − ax2
j , (1)

yj+1 = bxj , (2)

where xj and yj are the values of the two variables at “time” tj ,
and a and b are scalar constants. For the usual choices
a = 1.4, b = 0.3 of the parameters, the Hénon mapping shows
complex chaotic behavior.
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Hénon Attractor
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Example: Implementation of the ETKF on the Hénon
mapping

Time series of “true” states was generated for N = 104

steps
Observations were generated adding random observation
noise with mean 0 and variance 0.01 to both variables
Time series of analysis errors is computed by

ea
n =

√
(xa

n − x t
n)2 + (ya

n − y t
n)2, n = 1, . . . ,N
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Is It Possible to Do Better?

Two highly undesirable features of the results:
Huge spikes in the error
High overall rms error over time (0.12 vs. 0.14 for the
observations)

The only assumption made in this case was that the evolution
of the error was linear.

Problem: Show that the assumption of linear error dynamics
introduces a bias into the background value of the x component
and also leads to an underestimation of the background error
variance for x.
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Variance Inflation

This is a general problem with EKF, which has been known
at least since Jazwinski (1970), where a simple approach
was offered to correct the problem for the case in which the
second derivative (Hessian) is available; but it is rarely
mentioned in the EnKF literaure, where the problem is
usually attributed to an under-dispersive ensemble
A simple approach to cope with the problem is variance
inflation (e.g., Pb

n = ρMtn−1,tnPa
n−1MT

tn−1,tn , ρ > 1 ); it does
not remove the bias or restore Gaussanity, but it has a
large positive effect on the performance of the filter
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Illustration of the Effect of Variance Inflation
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The spikes disappear at a value of ρ, which is larger than the
value that minimizes the rms error
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Illustration for Two-Dimensional (M = 2) State Space

Analysis Ensemble at tn-1

Analysis Ensemble at tn

Background Ensemble at tn

Forecast Step

Update Step
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The Forecast Step of EnKF I

Given the {xa(k)
n−1 : k = 1,2, . . . ,K} ensemble of analyses, the

forecast step of EnKF obtains an ensemble of forecast
trajectories,

{γ(k)
n = x(k)

n (t) : t ∈ τn, k = 1,2, . . . ,K}
by an ensemble of nonlinear model integrations:

x(k)
n (t) =Mtn−1,t

(
xa(k)

n−1

)
, t ∈ τn k = 1,2, . . . ,K .

The k -th ensemble perturbation at time t in τn is defined by

X(k)(t) = x(k)(t)− x(t),

where

x̄(t) =
1
K

K∑
k=1

x(k)(t) =
1
K

K∑
k=1

Mtn−1,t

(
xa(k)

n−1

)
.
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The Forecast Step of EnKF II

The ensemble perturbations are generated such that they
satisfy

Pa
n−1 =

1
K − 1

K∑
k=1

Xa(k)
n−1(Xa(k)

n−1)T ,

In addition, the EnKF assumes that

x(k)(t) = Mtn−1,t

(
x̄a

n−1 + Xa(k)
n−1

)
≈ Mtn−1,t

(
x̄a

n−1
)

+ Mtn−1,tX
a(k)
n−1.

Then, if {Xa(k)
n−1} samples a normal distribution with mean 0,

{X(k)(t)} samples a normal distribution with mean 0 and
covariance matrix P(t) = 1

K−1
∑K

k=1 X(k)(t)
[
X(k)(t)

]T
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The Direct Estimation of Pb
nHT

τn
and HτnPb

nHT
τn

Pb
nHT

τn = E
[
Xb

n

(
HτnXb

n

)T
]

≈ 1
K − 1

K∑
k=1

Xb(k)
n

[
Hτn

(
xb(k)

n

)
−Hτn

(
xb(k)

n

)]T

=
1

K − 1

K∑
k=1

Xb(k)
n

(
Yb(k)

n

)T
,

HτnPb
nHT

τn ≈ 1
K − 1

K∑
k=1

Yb(k)
n

(
Yb(k)

n

)T

Because of covariance localization, only small sub-matrices of
Pb

nHT
τn and HτnPb

nHT
τn need to be computed
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The State Update Step of EnKF

The main differences between the different formulations of the
EnKF are in the update step:

1 Perturbed Observations: The analysis ensemble,
{xa(k)

n : k = 1,2, . . . ,K}, is generated such that it satisfies
the equations

x̄a = x̄b + K
[
yo −H

(
xb
)]

and
Pa = (I− KH)Pb.

2 Square-Root Filters: First x̄a
n and Pa

n are computed, then,
an ensemble of analysis perturbations,
{Xa(k)

n : k = 1,2, . . . ,K}, is generated such that it is
consistent with Pa

n
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Perturbed Observations

The main steps of the computation
1 K vectors of perturbed observations, {yo(k) : k = 1, . . . ,K}

are generated by adding random observation noise to the
vector of observations yo:

yo(k) = yo + e(k), k = 1, . . . ,K

The observation noise samples a distribution with mean 0
and covariance matrix R

2 The analysis ensemble is generated by assimilating a
different vector of perturbed observations into each
background ensemble member:

xa(k) = xb(k) + K
[
yo(k) −H

(
xb(k)

)]
, k = 1, . . . ,K
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A Few Comments on the Perturbed Observation
Schemes

The first correct formulations of EnKF were perturbed
observation schemes (Houtekamer and Mitchell 1998;
Burgers et al. 1998)
The acronym EnKF in many papers refers to only
perturbed observation schemes
In general, the easiest to implement among all
ensemble-based Kalman filters
Usually implemented as a serial assimilation scheme (the
observations are assimilated one-by-one or in small
batches)

I. Szunyogh BIRS Summer School



Extended Kalman Filter
Ensemble-Based Kalman Filters

General Formulation and Notations
EnKF Schemes
Frequently Asked Questions

Square-Root Filters

Recall that

Pa
n =

1
K − 1

K∑
k=1

Xa(k)
n−1(Xa(k)

n−1)T

We can form the Xa
n−1 matrix of ensemble perturbations

with the help of the ensemble perturbations: the k -th
column of Xa

n−1 is (K − 1)−1/2Xa(k)
n−1

Then
Pa

n = Xa
n−1

(
Xa

n−1
)T
.

Thus the analysis ensemble perturbations can be
generated by computing a square-root of Pa

n (the
square-root of a matrix is not uniquely defined!)
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A Few Comments on the Square-Root Filter Schemes

Schemes that belong to this group are the Ensemble
Square-Root Filter of Whitaker and Hamill (2002), the
Ensemble Adjustment Filter (Anderson 2001), the
Ensemble Transform Kalman Filter (Bishop et al. 2001),
the Local Ensemble Kalman Filter (Ott et al. 2004) and
the Local Ensemble Transform Kalman Filter (Hunt et
al. 2007)
The LETKF is not serial scheme: it estimate the state
vector components independently, assimilating all
observations that may affect the analysis of a component
in one step
Generally, they are more accurate than the perturbed
observations schemes for small ensembles

I. Szunyogh BIRS Summer School



Extended Kalman Filter
Ensemble-Based Kalman Filters

General Formulation and Notations
EnKF Schemes
Frequently Asked Questions

Comparison for 40-Variable Lorenz Model

CORRIGENDUM

JEFFREY S. WHITAKER AND THOMAS M. HAMILL

Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

(Manuscript received and in final form 30 December 2005)

We have discovered a coding error in the underlying
computations that were used to produce Fig. 3 from
Whitaker and Hamill (2002). This figure showed the
ensemble-mean analysis error from the ensemble Kal-
man filter (EnKF) and the ensemble square root filter
(EnSRF) for a 40-dimensional version of the model of
Lorenz and Emanuel (1998) with a forcing of 8.0 and a
time step of 0.05. In the production of this figure, our
ensemble data assimilation code generated synthetic
observations at each model grid point at each time that
should have been independent. While observation er-
rors changed with each data assimilation cycle, we dis-
covered a coding bug that inappropriately caused all
observation errors at a given time to be the same. A
corrected Fig. 3 is reproduced below (Fig. 4 results were
essentially unchanged). There was a slight degradation
in the relative improvement of our proposed EnSRF
relative to the EnKF when compared with the original
published version of the figure.
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FIG. 3. Ensemble-mean error as a function of the distance at
which the covariance filter goes to zero, and the covariance infla-
tion factor, for (a) the EnKF and (b) the EnSRF. Results are for
a 10-member ensemble averaged over 5000 assimilation cycles
using the model of Lorenz and Emanuel (1998), with observations
of every state variable. Observations have unit error variance.
Shaded areas indicate regions in parameter space where the filter
diverges.
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Corrected version of figure from Whitaker and Hamill (2002)
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Frequently Asked Questions

Q: Which EnKF scheme should I use in my
application?
A: The main differences between the schemes are in the
computational efficiency: for a large model and few
observations serial schemes are more efficient; when the
model is large and there are many observations the
LETKF is becoming more advantageous. For radiance
observations, the LETKF have some potential advantage
Q: Can EnKF schemes assimilate radiance
observations?
A: Yes, but you have to find an acceptable localization and
bias correction strategies. Recommended reading on the
topic: Fertig et al. (Tellus, 2007, 2009); Miyoshi et al.
(2010); Aravequia et al. (MWR, 2011); Campbell et al.
(MWR, 2010)
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