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Conformal Radiotherapy 
  Fire from multiple 

angles 
  Superposition allows 

high dose in target, low 
elsewhere 

  Beam shaping via 
collimator 

  Gradient across beam 
via wedges 
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The planning process

first contour tumor

then determine beam angles

avoid critical structures

but do it in 3d using only 2d
image slices

Patient Example 

 Grey – prostate 

 Pink – rectum 

 Red - bladder 
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An Oncology Game

Game developed by the Educational
Research Challenge Area (ERCA) of
the Wisconsin Institutes of
Discovery

Coming soon to a web browser near
you!

Michael Ferris (University of Wisconsin) Stoch Opt in RT Banff, March ’11 4 / 29



The classical problem

min F (d) s.t. d = Px , x ∈ X , d ∈ D

P is the fluence map from a given angle in 3dCRT, x are the angle
weights

X represents constraints on the device (typically x ≥ 0, or cardinality
restrictions)

D represents constraints on the dose distribution (bound constraints,
DVH-constraints)

P could be the pencil beam matrix in IMRT, x are then the bixel
weights

P could represent shots of radiation in Gamma Knife radiosurgery

Many forms for F , X and D
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Types of Uncertainty

Parameteric uncertainty (least squares fit of pencil beam/EUD
parameters)

Input data uncertainty (tumor extent/patient characteristics:
GTV/CTV/PTV)

Multi-period models (fractionation/dynamics: positioning/setups)

Outcome uncertainty (one treatment precludes another follow up
treatment/patient variability)

Uncertainty resolution dependent on action (measurements affect
dosage/interactions between treatments)

Model structural uncertainty (biological response)
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Optimization of a model under uncertainty

Modeler: assumes knowledge of distribution
Often formulated mathematically as

min
x∈X

f (x) = E[F (x , ξ)] =

∫
ξ
F (x , ξ)p(ξ)dξ

(p is probability distribution).

Can think of this as optimization with noisy function evaluations

Traditional Stochastic Optimization approaches: (Robbins/Munro,
Keifer/Wolfowitz)

Often requires estimating gradients: IPA, finite differences

Compare to stochastic neighborhood search
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Simulation Optimization

Computer simulations are used as substitutes to understand or predict
the behavior of a complex system when exposed to a variety of
realistic, stochastic input scenarios

Widely used in epidemiology, engineering design, manufacturing,
supply chain management, medical treatment and many other fields
(calibration, parameter tuning, inverse optimization)

min
x∈X

f (x) = E[F (x , ξ)],

The sample response function F (x , ξ)
I typically does not have a closed form, thus cannot provide gradient or

Hessian information
I is normally computationally expensive
I is affected by uncertain factors in simulation

Use of derivative free methods

Michael Ferris (University of Wisconsin) Stoch Opt in RT Banff, March ’11 8 / 29



Sampling methods

Take sample ξ1, . . . , ξN of N realizations of random vector ξ
I viewed as historical data of N observations of ξ, or
I generated via Monte Carlo sampling

for any x ∈ X estimate f (x) by averaging values F (x , ξj)

(SAA): min
x∈X

f̂N(x) :=
1

N

N∑
j=1

F (x , ξj)


Nice theoretical asymptotic properties

Can use standard optimization tools to solve the SAA problem

Implementation uses common random numbers, distributed
computation
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Chance Constrained Problems

min
x∈X

f (x) s.t. Prob(C (x , ξ) > 0) ≤ α

α is some threshold parameter, C is vector valued

joint probabilistic constraint: all constraints satisfied simultaneously -
possible dependence between random variables in different rows

extensive literature

linear programs with probabilistic constraints are still largely
intractable (except for a few very special cases)

I for a given x ∈ X , the quantity Prob(C (x , ξ) > 0) requires
multi-dimensional integration

I the feasible region defined by a probabilistic constraint is not convex

Recent work by Ahmed, Luedtke, Nemhauser and Shapiro
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Other approaches for treating uncertainty

Robust optimization (worst case analysis)

Recourse problems (multi-stage decisions)

Model predictive control

Approximate Bayesian computation (ABC)

Importance sampling and variance reduction

Risk measures, etc
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Financial Modeling: Risk Measures (Shaping Distributions)

Key idea is to control features of the probability distribution

Classical: utility/disutility function u(·):

min
x∈X

f (x) = E[u(F (x , ξ))],

Modern approach to modeling risk aversion uses concept of risk
measures

I mean-risk
I semi-deviations
I mean deviations from quantiles, VaR, CVaR
I Römish, Schultz, Rockafellar, Urasyev (in optimization literature)
I Much more in mathematical economics and finance literature
I Optimization approaches still valid, different objectives

Could use for personalized “risk” preferences

Michael Ferris (University of Wisconsin) Stoch Opt in RT Banff, March ’11 12 / 29



CVaRα(d)
VaR, CVaR, CVaR+  and CVaR-

Loss 
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CVaRα: mean of upper tail at level α - the average dose received by the
subset of relative volume (1− α) receiving the highest dose.
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Key observation

Clear that this is equal to the average dose of the (1− α)N voxels (point
volumes) receiving highest dose.
Rewriting this in symbols:

CVaRα(d) = VaRα(d) +
1

(1− α)N

N∑
j=1

(
d − VaRα(d)

)
+

Thus CVaR is just VaR moved to the right by the average of the tail.
The next step is a clever theorem due to Ogryczak and Tamir (2003) that
states this expression can be written as:

CVaRα(d) = min
a∈R

a +
1

(1− α)N

N∑
j=1

(d − a)+


Thus can impose linear constraints to get CVaRα(d) ≤ U
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Dose volume and cumulative dose volume histograms

(a) The dose volume histogram corre-
sponding to a particular solve .

(b) The cumulative dose volume his-
togram of the same solve.
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Dose shaping problems

Standard constraints (of the DVH form) are:
No more than the fraction α of volume X should receive doses
exceeding UX :

F (UX ) = P{DX ≤ UX} ≥ 1− α. (1)

These are probabilistic constraints.

Existing approaches use counting and MIP constraints for example
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A probabilistic formulation (for OAR)
The proportion of voxels v ∈ X receiving dose not exceeding t:

F (t) =
card(v ∈ X : DX (v) ≤ t)

card(X )
(2)

Cumulative distribution function of random variable DX representing dose
received by randomly selected voxel in X
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F (t) related to Cumulative Dose Volume Histogram (cDVH) of OAR:

F (t) = 1− cDVHX (t)

Michael Ferris (University of Wisconsin) Stoch Opt in RT Banff, March ’11 17 / 29



PTV is similar

Proportion of voxels v ∈ Y receiving doses not exceeding t as a function
of t is a distribution function of a random variable DY representing the
dose received by a randomly selected voxel in Y :

G (t) =
card(v ∈ Y : DY (v) ≤ t)

card(Y )
. (3)

G (t) is related to cDVH of PTV as follows:

G (t) = 1− cDVHY (t).

The requirement that at least fraction β of volume Y should receive doses
exceeding LY can be written as

G (LY ) = P{DY ≤ LY } ≤ 1− β. (4)
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Stochastic dominance

Problems involving such constraints are well-studied in the literature. They
are, in general, very difficult to analyze and to solve, because of the
non-convexity of the feasible region defined by (1) and (4).
It appears natural to control the shape of these histograms, not just their
values at UX and LY , respectively. Therefore, we require

F (t) ≥ Φ(t), UX ≤ t <∞,
G (t) ≤ Ψ(t), 0 ≤ t ≤ LY .

(5)

Here Φ(·) and Ψ(·) are fixed benchmark distribution functions satisfying
the conditions

Φ(UX ) = 1− α, Ψ(LY ) = 1− β.
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Benchmark distributions

(c) A solution using a cumulative normal
constraint curve.

(d) A solution using piecewise linear con-
straint curves constructed from similar
points.
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The model

Denoting by f (w , ξ) the cost function, we obtain the formulation

min f (w , ξ)

s.t. F (t) ≥ Φ(t), UX ≤ t <∞, (6)

G (t) ≤ Ψ(t), 0 ≤ t ≤ LY , (7)

(w , ξ) ∈ S .

Here S represents the feasible set for the decision vector (w , ξ), involving
various technical restrictions, while the inequality constraints (6)–(7) are
the dose limitations. Observe that F (t) and G (t) in these constraints
depend on our decisions (w , ξ).

Michael Ferris (University of Wisconsin) Stoch Opt in RT Banff, March ’11 21 / 29



The key approximation

Constraints on distribution functions are known in the literature as
the first order stochastic dominance constraints (Dentcheva and
Ruszczyński)

Our constraints (6)–(7) are left and right tail versions of such
conditions.

In general, they define a non-convex feasible region, even though the
random variables DX and DY depend linearly on the decision
variables.

A very tight convex approximation of the feasible region is obtained
by using the following family of constraints:∫ ∞

T
(1− F (t)) dt ≤

∫ ∞
T

(1− Φ(t)) dt, UX ≤ T <∞,∫ T

0
G (t) dt ≤

∫ T

0
Ψ(t) dt, 0 ≤ T ≤ LY .
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The key approximation

Constraints on distribution functions are known in the literature as
the first order stochastic dominance constraints (Dentcheva and
Ruszczyński)

Our constraints (6)–(7) are left and right tail versions of such
conditions.

In general, they define a non-convex feasible region, even though the
random variables DX and DY depend linearly on the decision
variables.

A very tight convex approximation of the feasible region is obtained
by using the following family of constraints:∫ ∞

T
(1− F (t)) dt ≤ u(T ), UX ≤ T <∞,∫ T

0
G (t) dt ≤ v(T ), 0 ≤ T ≤ LY .
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An equivalent formulation of the last relation can be obtained by
employing the following identities:∫ ∞

T
(1− F (t)) dt =

1

card(X )

∑
v∈X

max
(
0,DX (v)− T

)
, UX ≤ T <∞,

∫ T

0
G (t) dt =

1

card(Y )

∑
v∈Y

max
(
0,T − DY (v)

)
, 0 ≤ T ≤ LY .

Observe that the right hand sides are convex with respect to DX (v) and
DY (v), respectively.
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Convex approximation

We obtain a convex approximation of our problem:

min f (w , ξ) subject to

1

card(X )

∑
v∈X

max
(
0,DX (v)− T

)
≤ u(T ), UX ≤ T <∞, (8)

1

card(Y )

∑
v∈Y

max
(
0,T − DY (v)

)
≤ v(T ), 0 ≤ T ≤ LY , (9)

(w , ξ) ∈ S .

One can have several OAR’s X1, . . . ,Xm with their corresponding
benchmark functions Φi (t), i = 1, . . . ,m (i.e. several ui functions).
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The algorithmic idea

Problem appears to be a rather difficult optimization problem,
because it involves a continuum of constraints, for all possible values
of the target dose T .

The idea of the method is to select a small finite set of inequalities
(8) and (9), solve the resulting approximation, and add new
constraints, if needed.

The inequality at T = UX

1

card(X )

∑
v∈X

(
DX (v)− UX

)
≤ u(UX )

limits the average dose in Organ at Risk X and is certainly not
sufficient to guarantee the relations (8) for all T .

We select sets Al ⊂ X , l = 1, 2, . . . , and we restrict from above
average doses in each of the sets Al
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(e) The solution generated
after one iteration of the al-
gorithm.

(f) The improvement on
the solution in (e) after one
more iteration.

(g) The improvement on
the solution in (f) after 10
iterations.

Figure: A comparison of the progress made by the tool after various numbers of
iterations using the same constraints. In each figure, the previous iteration’s
solution is displayed as the lighter lines.
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Implementation: a graphical tool

Figure: The user interface presented in our tool, including controls for
constraining the PTV and OAR, limiting the number of iterations, weighting the
volumes, running solves, clearing new solves and saving images.
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Conclusions

Many different optimization approaches to treat (model) uncertainties

How much do we know about distribution of data?

Specific models needed for these applications

Stochastic model implementation and tool interfaces are needed

New approach to deal with full distributions (cDVH constraints)

Efficient implementation via cutting plane approach

Tool available that allows piecewise linear shaping

Can be used in conjunction with any underlying planning model

Many extensions to this work and other medical applications needed
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