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Linear Inverse Problems
• Find me a solution of

• ��  m x n, m<n

• Of the infinite collection of solutions, which one 
should we pick?

• Leverage structure:

• How do we design algorithms to solve 
underdetermined systems problems with priors?

y = Φx

Sparsity Rank Smoothness Symmetry



• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm
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Compressed Sensing: Candes, Romberg, Tao, 
Donoho, Tanner, Etc...



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank
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• 2x2 matrices
• plotted in 3d

Nuclear Norm Heuristic

Fazel 2002. 
R, Fazel, and Parillo 2007

Rank Minimization/Matrix Completion
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• Integer solutions:
 all components of x 

are ±1

• Convex hull is the 
 unit ball of the l1 norm
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Integer Programming
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Donoho and Tanner 2008
Mangasarian and Recht. 2009.



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



Permutation Matrices
• X a sum of a few permutation matrices
• Examples: Multiobject Tracking (Huang et al), 

Ranked elections (Jagabathula, Shah)

• Convex hull of the permutation matrices: Birkhoff 
Polytope of doubly stochastic matrices

¥ Permutahedra:  convex hull of permutations of a 
fixed vector.

[1,2,3,4]



Moment Curve
• Curve of [1,t,t2,t3,t4,...],   t∈T, some basic set.

•  System Identification, Image Processing, Numerical 
Integration, Statistical Inference...

• Convex hull is characterized by linear matrix 
inequalities (Toeplitz psd, Hankel psd, etc)



Cut Matrices
• Sums of rank-one sign matrices: 

• Collaborative Filtering (Srebro et al), Clustering in 
Genetic Networks (Tanay et al), Combinatorial 
Approximation Algorithms (Frieze and Kannan)

• Convex hull is the cut polytope.  Membership is NP-
hard to test

• Semidefinite approximations of this hull to within 
constant factors.

X =
�
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Atomic Norms
• Given a basic set of atoms,     , define the function

• When      is centrosymmetric, we get a norm

• When does this work?  
• How do we solve the optimization problem?

�x�A = inf {
�

a! A

|ca | : x =
�

a! A

caa}

�x�A = inf{t > 0 : x ∈ tconv(A)}

A

minimize �z�A
subject to Φz = yIDEA:

A



Atomic norms in sparse 
approximation

• Greedy approximations

• Best n term approximation to a function f in the 
convex hull of A.

• Maurey, Jones, and Barron (1980s-90s)
• Devore and Temlyakov (1996)

�f − fn�L2 ≤
c0�f�A√

n



• Set of directions that decrease the norm from x 
form a cone:

• x is the unique minimizer if the intersection of this 
cone with the null space of Φ	
  equals {0}

Tangent Cones

y = ! z x
minimize �z�A
subject to Φz = y

{z : �z�A ≤ �x�A}
TA (x)

TA (x) = {d : ! x + ! d! A " ! x! A for some! > 0}



Gaussian Widths
• When does a random subspace, U, intersect a 

convex cone C at the origin?

• Gordon 88: with high probability if

• Where                                               is the 
Gaussian width.

• Corollary: For inverse problems: if Φ is a random 
Gaussian matrix with m rows, need                           
for recovery of x.

codim(U ) ≥ w(C)2

w(C) = E
�

max
x ! C " Sn! 1

�x, g�
�

m ≥ w(TA (x))2



• Suppose we observe

• If     is an optimal solution, then                           
provided that

Robust Recovery

minimize �z�A
subject to �Φz− y� ≤ δ

�w�2 ≤ !

! x " x̂! #
2δ

�
öx

y = Φx + w

{z : �z�A ≤ �x�A}

�Φz− y� ≤ !

m !
c0w(TA (x))2

(1 " ! )2



What can we do with Gaussian 
widths?

• Used by Rudelson & Vershynin for analyzing sharp 
bounds on the RIP for special case of sparse vector 
recovery using l1.

• For a k-dim subspace S, w(S)2 = k.

• Computing width of a cone C not easy in general

• Main property we exploit: symmetry and duality 
(inspired by Stojnic 09)
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Duality

•        is the polar cone.  

•            is the normal 
cone. Equal to the cone 
induced by the 
subdifferential of the 
atomic norm at x.

C∗

TA (x)∗ = NA (x)
NA (x)

NA(x)

C ! = { w : �w, z� ≤ 0 ∀ z ∈ C}



Dual Widths

C

C∗

x = ΠC(x) + ΠC∗(x)
!ΠC(x),ΠC∗(x)" = 0

C ! = { w : �w, z� ≤ 0 ∀ z ∈ C}

FACT:

w(C)2 ≤ Eg

�
dist(g, C∗)2� = Eg

�
�ΠC(g)�2�

= Eg

�
�g�2 − �ΠC∗(g)�2�

= n − Eg

�
�ΠC∗(g)�2�

= n − Eg

�
dist(g, C)2� ≤ n − w(C∗)2

Proposition: w(C)2 + w(C∗)2 ≤ n



Symmetry I - self duality
• Self dual cones - orthant, positive semidefinite cone, 

second order cone
• Gaussian width = half the dimension of the cone

C

C∗

w(C) = w(C ! )
+=⇒

w(C)2 ≤ n/ 2

w(C)2 + w(C∗)2 ≤ n



Spectral Norm Ball
• How many measurements to recover a unitary 

matrix?

• Tangent cone is skew-symmetric matrices minus the 
positive semidefinite cone.

• These two sets are orthogonal, thus

TA(U) = S ! P

w(TA(U ))2 ≤
�

n− 1
2

�
+

1
2

�
n

2

�
=

3n2 − n
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• Hypercube:

• Sparse Vectors, n vector, sparsity s<0.6n

• Low-rank matrices: n1 x n2, (n1<n2), rank r

Re-derivations 

m ! 3r (n1 + n2 " r ) + 2 n1

m ! n/2

m ! (2s + 1) log
�

n " s

s

�



General Cones
• Theorem: Let C be a nonempty cone with polar 

cone C*.  Suppose C* subtends normalized solid 
angle µ.  Then

• Proof Idea:  The expected distance to C* can be 
bounded by the expected distance to a spherical cap 

• Isoperimetry: Out of all subsets of the sphere with 
the same measure, the one with the smallest 
neighborhood is the spherical cap

• The rest is just integrals...

w(C) ! 3

�

log
�

4
µ

�



Symmetry II - Polytopes
• Corollary: For a vertex-transitive (i.e., 

“symmetric”) polytope with p vertices, O(log p) 
Gaussian measurements are sufficient to recover a 
vertex via convex optimization.

• For n x n permutation matrix: m = O(n log n)
• For n x n cut matrix: m = O(n)

• (Semidefinite relaxation also gives m = O(n))



Algorithms

• Naturally amenable to projected gradient algorithm:

• Similar algorithm for atomic norm constraint

• Same basic ingredients for ALM, ADM, Bregman, 
Mirror Prox, etc... how to compute the shrinkage?

zk+1 = ! ηµ(zk ! ! " ∗rk)

minimizez ! Φz " y! 2
2 + µ! z! A

rk = ! zk − y

“shrinkage”

residual

! τ (z) = arg min
u

1
2�z − u�2 + τ�u�A



Relaxations

• Dual norm is efficiently computable if the set of 
atoms is polyhedral or semidefinite representable

• Convex relaxations of atoms yield approximations to 
the norm

• Hierarchy of relaxations based on θ-Bodies yield 
progressively tighter bounds on the atomic norm

A1 ⊂ A2 =⇒ �x�!
A 1
≤ �x�!

A 2
and �x�A 2 ≤ �x�A 1

! v! !
A = max

a" A
"v, a#

NB! tangent cone 
gets wider



Atomic Norm Decompositions

• Propose a natural convex heuristic for enforcing 
prior information in inverse problems

• Bounds for the linear case: heuristic succeeds for 
most sufficiently large sets of measurements

• Stability without restricted isometries

• Standard program for computing these bounds: 
distance to normal cones

• Approximation schemes for computationally difficult 
priors



Extensions...
• Width Calculations for more general structures

• Recovery bounds for structured measurement 
matrices (application specific)

• Understanding of the loss due to convex relaxation 
and norm approximation

• Scaling generalized shrinkage algorithms to massive 
data sets


