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L Introduction
LAirway shape modeling: the problem

Motivation

What does the average human airway tree look like?

Nobody knows! There are no tools available for doing statistics on
airway trees!
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L Introduction
LAirway shape modeling: the problem

Motivation

The airway tree can be described as a combination of

» tree topology (connectivity / combinatorics)
» geometry (branch shape)
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L Introduction
LAirway shape modeling: the problem

Motivation
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- Introduction

LAirway shape modeling: the problem

Motivation

So why don't you just collect the edge information in a long vector
and compute averages? Consider the rather similar trees:

which are represented by the rather different vectors
(a,b,c,d,e) and (a,d, f,e,c).

We need methods which can gracefully handle topological
differences.
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L Introduction
L Comparing trees

Tree distance example: Tree edit distance (TED)

v

TED is a classical, algorithmic distance

» tree-space with TED is a "funny space’

v

dist( Ty, T>) is the minimal total cost of changing T; into T,
through three basic operations:

v

Remove edge, add edge, deform edge.
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L Introduction
L Comparing trees

Tree distance example: Tree edit distance (TED)

v

TED is a classical, algorithmic distance

» tree-space with TED is a "funny space’

v

dist( Ty, T>) is the minimal total cost of changing T; into T,
through three basic operations:

v

Remove edge, add edge, deform edge.
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L Introduction
L Comparing trees

Tree distance example: Tree edit distance (TED)

» Almost all geodesics between pairs of trees are non-unique
(infinitely many).

|
4

» Then what is the average of two trees? Many!
» TED is not suitable for statistics.
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L Introduction

- Comparing trees

Tree distance example: Tree edit distance (TED)

Most state-of-the-art approaches to distance measures and
statistics on tree- and graph-structured data are based on TED!

» Wang and Marron: Object oriented data analysis: sets of trees. Annals of
Statistics 35 (5), 2007.

» Ferrer, Valveny, Serratosa, Riesen, Bunke: Generalized median graph
computation by means of graph embedding in vector spaces. Pattern
Recognition 43 (4), 2010.

» Riesen and Bunke: Approximate Graph Edit Distance by means of Bipartite
Graph Matching. Image and Vision Computing 27 (7), 20009.

» Trinh and Kimia, Learning Prototypical Shapes for Object Categories. CVPR
workshops 2010.
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L Introduction
L Comparing trees

Tree distance example: Tree edit distance (TED)
The problems can be "solved” by choosing specific geodesics.
OBS! Geometric methods can no longer be used for proofs, and
one risks choosing problematic paths.

(c) m L2
Figure: Trinh and Kimia (CVPR workshops 2010) compute average shock
graphs using TED with the simplest possible choice of geodesics.
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|—Modeling trees — the ideal model
|

Modeling trees — the ideal model
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|—Modeling trees — the ideal model

The model we are looking for

» a geodesic metric structure, with good uniqueness properties
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|—Modeling trees — the ideal model

The model we are looking for

» a geodesic metric structure, with good uniqueness properties
» geodesics corresponding to natural deformations
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LModeling trees — the ideal model

The model we are looking for

» a geodesic metric structure, with good uniqueness properties
» geodesics corresponding to natural deformations

» averages and modes of variation, with good uniqueness
properties
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|—Modeling trees — the ideal model

The model we are looking for

=1 Ty Ta Ty

Figure: Tolerance of structural noise.
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|—Building a space of tree-like shapes
|

Building a space of tree-like shapes !
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LBuiIding a space of tree-like shapes

Tree representation

How to represent tree-like shapes mathematically?
Tree-like (pre-)shape = pair (.7, x)
» 7 =(V,E,r, <) rooted, ordered/planar binary tree,
describing the tree topology (combinatorics)

NS X (AR
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LBuilding a space of tree-like shapes

Tree representation

How to represent tree-like shapes mathematically?
Tree-like (pre-)shape = pair (7, x)
» 7 =(V,E,r,<) rooted, ordered/planar binary tree,
describing the tree topology (combinatorics)
» x € [[.cg A a product of points in attribute space A
describing edge shape

N\ O (AR
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LBuiIding a space of tree-like shapes

Tree representation

We are allowing collapsed edges, which means that
> we can represent higher order vertices

» we can represent trees of different sizes using the same
combinatorial tree .

(dotted line = collapsed edge = zero/constant attribute)
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|—Building a space of tree-like shapes

Tree representation

Edge representation through landmark points
Edge shape space is (RY)", d = 2,3.
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LBuiIding a space of tree-like shapes

The space of tree-like preshapes

Fix a maximal combinatorial 7. We use a finite tree; could
reformulate for infinite trees.

Definition
Define the space of tree-like pre-shapes as the product space

H(Rd)n

ecE

where (R9)" is the edge shape space.

This is just a space of pre-shapes.
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|—Building a space of tree-like shapes

From pre-shapes to shapes

a

Many shapes have more than one representation
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LBuiIding a space of tree-like shapes

From pre-shapes to shapes

Not all shape deformations can be recovered as natural paths in
the pre-shape space:

AVA
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|—Building a space of tree-like shapes

Shape space definition

> Start with the pre-shape space X = []..g(R9)".
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LBuiIding a space of tree-like shapes

Shape space definition

> Start with the pre-shape space X = []..g(R9)".

» Define an equivalence ~ by identifying points in X that
represent the same tree-shape.
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LBuiIding a space of tree-like shapes

Shape space definition

> Start with the pre-shape space X = []..g(R9)".

» Define an equivalence ~ by identifying points in X that
represent the same tree-shape.

a a
Ny L Ad

/\d

» This corresponds to identifying, or gluing together, subspaces
{xeX|xe=0ife¢ E1} and {x € X|xe =01if e ¢ Ex} in X.
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|—Building a space of tree-like shapes

Shape space definition

> Define the space of ordered (planar) tree-like shapes
X=X/ ~.

» For the landmark point shape space this is just a folded
Euclidean space.
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|—Gec:metries on the space of trees
|

Geometries on the space of trees
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LGeometries on the space of trees

Shape space metric definition

Given a metric d on the vector space X = [Tece(RY)" we define
the quotient pseudometric d on the quotient space X = X/ ~ by
setting

k
d(x,y) = inf {Z d(xi, yi)lx1 € X, yi ~ Xit1, ¥k € )7} - (1)

i=1

T
© ¢

ds d(z,w) = dy +dg + d3

S g

Theorem
The quotient pseudometric d is a metric on X. O
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LGeometries on the space of trees

Shape space metric definition

Define two metrics d; and db on X, induced by two different
product norms on the product of edge shape spaces

X = [lece(RY)"™

I1 norm: di(x,y) = > .cr lIxe — Yell
2 norm:  da(x,y) = /D eck lIXe — Yell?

There are metrics di and d» on X induced by d; and db.

maden@diku dk



LGeometries on the space of trees

Shape space metric definition

It turns out that dj is an old friend; namely the well-known Tree
Edit Distance metric:

Theorem )
The metric d; is the TED metric on trees that "fit" into X. O

Terminology
Refer to do as the QED (Quotient Euclidean Distance) metric.
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|—Gec:metries on the space of trees

Geodesics in metric spaces

Theorem B L
Let d = dy or db. Then (X, d) is a contractible, complete, proper
geodesic space.

O]
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|—Geometries on the space of trees

How does the QED fulfill our wishes?

It defines a geodesic metric space

maden@diku dk

DA



LGeometries on the space of trees

How does the QED fulfill our wishes?

Example of a QED geodesic deformation:

% A% A%

Play movie
Note the tolerance of topological differences and natural
deformation.
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LGeometries on the space of trees

How does the QED fulfill our wishes?

Noise tolerance:

T=T T Ty T

Sequences of trees with disappearing branches will converge
towards trees without the same branch.
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|—Gec:metries on the space of trees

How does the QED fulfill our wishes?

» We're doing OK so far!

» Let’s return to geometry to look for uniqueness and statistical
properties

maden@diku dk



LGeometries on the space of trees

Curvature in metric spaces

=1

81
(3

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(x, a).
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LGeometries on the space of trees

Curvature in metric spaces

81

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(x, a).

» A space has non-positive curvature if it is locally CAT(0).
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LGe(:vmetries on the space of trees

Curvature in metric spaces

8

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(x, a).

» A space has non-positive curvature if it is locally CAT(0).

» (Similarly define curvature bounded by x by using comparison
triangles in hyperbolic space or spheres of curvature «.)

maden®@diku dk



|—Gec:metries on the space of trees

Curvature in metric spaces

Example

Figure: Left: CAT(0) space. Right: With A =R" and the QED metric;
locally CAT(0) except for at the origin.
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LGeometries on the space of trees

Curvature in metric spaces

Example

Figure: Left: CAT(0) space. Right: With A =RN and the QED metric
locally CAT(0) except for at the origin.

Theorem (see e.g. Bridson-Haefliger)

Let (X, d) be a CAT(0) space; then all pairs of points have a
unique geodesic joining them. The same holds locally in CAT (k)
spaces, x # 0.

maden@diku dk
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LGeometries on the space of trees

Curvature of shape space

Theorem

Consider (X, c_iz), shape space with the QED metric.

v

v

v

Its geodesics are locally unique at generic points.

v

At non-generic points, the curvature is unbounded.

maden@diku dk

At generic points, this space has non-positive curvature.
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LGeometries on the space of trees

Curvature of shape space

Theorem

Consider (X, d»), shape space with the QED metric.

At generic points, this space has non-positive curvature.

v

v

v

Its geodesics are locally unique at generic points.

v

At non-generic points, the curvature is unbounded. O
Theorem / 5\
» Consider (X, d), shape space with TED. Af N ‘ .
» It has nowhere locally unique geodesics. E
» Its curvature is everywhere unbounded. \Ai /

i
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LGeometries on the space of trees

3D trees?

So far we talked about ordered (planar) tree-like shapes; what
about unordered (spatial) tree-like shapes?

TPAMI

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted t
maden@diku dk
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LGecvmetries on the space of trees

3D trees?

» Planar shapes have a given edge order.

» Unordered trees: Give a random order

» Denote by G the group of reorderings of the edges that do
not alter the connectivity of the tree.

» The space of spatial/unordered trees is the space X = X/G
> Give X the quotient pseudometric d.

» d(X,y) corresponds to considering all possible orders on ¥ and
choosing the order that minimizes d(%, ¥).

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to
TPAMI
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LGecvmetries on the space of trees

3D trees?

Theorem

» For the quotient pseudometric z/_inguced by either dy or db,
the function d is a metric and (X, d) is a contractible,
complete, proper geodesic space.

» At non-generic points, (X, d>) has non-positive curvature.

» On the other hand, ()=<, di) has everywhere unbounded
curvature.

> ...so everything we proved for ordered trees, still holds. O

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to
TPAMI
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L Statistical properties
|

Statistical properties 3
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L Statistical properties

Averages in the QED metric

Theorem

Endow X with the QED metric d». For a generic point x € X
there is a radius rx s.t sets {x;};_; contained in B(X, rx)

...have unique means, defined as argmin ) d(x, x;)

T

O 22

1‘3.
T4
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L Statistical properties

Averages in the QED metric

Endow X with the QED metric d». For a generic point X € X,
there is a radius r s.t sets {x;}7_; contained in B(X, rx):

Theorem
...have unique circumcenters, defined as the center of the

smallest sphere containing all the {x;}?_;.

maden@diku dk



LStatistical properties

Averages in the QED metric

Endow X with the QED metric c_lg. For a generic point x € X,
there is a radius ry s.t sets {x;}?_; contained in B(X, rx):

Theorem (Billera, Vogtmann, Holmes)
...have unique centroids, defined by induction on |S| = n:
» If |S| =2, then ¢(S) is the midpoint of the geodesic
between the two elements of S.
» If |S| = n > 2 and we have defined ¢(S’) for all S’ with
|S’| < n, then denote by c!(S) the set
{c(58")|S' € S,|S’| = n— 1} and denote by
ck(S) = c*(ck1(S)) when k > 1.
> If c¥(S) — p for some p € X as k — oo, then ¢(S) = p
is the centroid of S. O]
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L Statistical properties

Averages in the QED metric

Synthetic data:

AR AN AR AR

Figure: A small set of synthetic planar tree-shapes.

TR AK

Figure: Left: Mean shape. Right: Centroid shape.

These choices of "average” give rather similar results.
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L Statistical properties

Averages in the QED metric

Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar

tree-shapes. Q«/

Figure: a): The vascular trees are extracted from photos of ivy leaves. b)
The mean vascular tree.
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L Statistical properties

Airway shape modeling

Traghea
RB1
RB2. 1
A RMB
ha UL s
Bronchint
LRBAES  poe
RLLT
A
RuL Re7

L 186

RES. LB3

A
RBIORBY

Figure: Left figure borrowed from Tschirren et al. *

» Combinatorial structure of airway tree is somewhat fixed, for
anatomical reasons.

» There are topological differences, making both global and
local comparison difficult.

“Tschirren et al: Matching and anatomical labeling of human airway tree,
TMI 2005
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L Statistical properties

Airway shape modeling

Experiment 1: Compute approximate (k < 3) geodesic distances
between six airways, two images from each of three different

people. We can clearly distinguish patients:

P(1,1)

P(1,2) P(2,1) P(2,2) P(8,1) P32

P(1,1)

0

309.09 437.58 452.62 375.40 378.19

P(1,2)

309.09

0 435.11 402.71 400.41 349.41

P(2,1)
P(2,2)
P@3.1)

437.58

452,62
375.40

43511 0 400.91 448.45 392.69
402.71 400.91 0 456.69 411.24
400.41 448.45 456.69 0 324.43

P(3.2)

378.19

349.41 392.69 411.24 324.43 0

*A. Feragen, P. Lo, M. de Bruijne, F. Lauze and M.-Nielsen, ACCV2010.
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LStatistical properties

Airway shape modeling

Experiment 2: Combine geodesic deformations with a voting
scheme to induce anatomical branch labeling on 20 noisy airways
from 15 subjects. Average correct labeling rate of 83%. *

CASE (21122 23 24|25 (26|27 (28|29 |30
% correct|75(88.2|92.9| 80 |77.8/86.7|88.9|94.4|66.7|89.5
CASE |31/ 32|33 |34|35|36|37|38]39|40
% correct|90(76.5|88.9|100(83.3|78.9(66.7| 80 | 30 |76.5

Figure: Correct labeling quotas for the different airway trees.

“A. Feragen P. Lo, V. Gorbunova, A. Dirksen, J. Reinhardt and M. de

Bruijne, submitted.
maden@diku dk



L Statistical properties

Airway shape modeling

Experiment 4: The mean upper airway tree*

50 50
tree-shape.

Figure: A set of upper airway tree-shapes along with their mean

maden@diku dk

“A. Feragen, S. Hauberg, M. Nielsen and F. Lauze, ICCV-2011-



L Statistical properties

Airway shape modeling

Experiment 5:

L e L S
LAl L L L

Figure: A set of upper airway tree-shapes (projected)

L L

Figure: The QED and TED (algorithm by Trinh and Kimia) means.
4 .

maden@diku dk
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|—Statistical properties
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Computational issues
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LStatistical properties

Computational issues

Recall the definition of the distance between two tree-shapes:

d(x,y) = inf {

i=1

ds
A

k
> d(xi,yi)lx E)_(aYiNXi+17Yk€)7}~ (1)

d

(.T,ﬂ)) =dy +do + d3

This suggests having to consider infinitely many combinations of
paths between different equivalence classes of tree-shapes.
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|—Statistical properties

Computational issues

» Recall similarity with TED: computation for unordered trees is
NP complete.
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L Statistical properties

Computational issues

» Recall similarity with TED: computation for unordered trees is
NP complete.
» TED has the following

property:

T

Tia Tia

d(T1, T2) =d(T11, T21) + d(Ti2, T22).

Tz
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L Statistical properties

Computational issues

» Recall similarity with TED: computation for unordered trees is
NP complete.

» TED has the following property:
P Tz

T” TI-Z 3 ”T.z‘l &'2::'
d(Ty, T2) = d(T11, To1) + d(T12, T22).
» This property is used in many TED algorithms.

maden®@diku dk



L Statistical properties

Computational issues

» Recall similarity with TED: computation for unordered trees is
NP complete.

» TED has the following property:
et i

SN A
d(Tl, T2) = d( T171, T271) + d(T172, T272).

» This property is used in many TED algorithms.

» The same property does not hold for the QED metric.

maden@diku dk



L Statistical properties

Computational issues

» As a consequence, we expect exact computation of the QED
metric to be NP-complete. At present, we approximate by
bounding the number k in the definition of the metric:

k
d(x,y) = inf {Z d(xi,yi)lx1 € X,yi ~ Xi+1,yk € }7} - (1)
=P li=

maden@diku dk



LStatistical properties

Computational issues

» As a consequence, we expect exact computation of the QED
metric to be NP-complete. At present, we approximate by
bounding the number k in the definition of the metric:

k
d(x,y) = inf {Z d(xi,yi)lx1 € X,yi ~ Xi+1,yk € )7}- (1)
i=1

k<K

» We also reduce computation time using partial labelings,
e.g. from an initial branch matching.

maden@diku dk



LStatistical properties

Computational issues

» As a consequence, we expect exact computation of the QED
metric to be NP-complete. At present, we approximate by
bounding the number k in the definition of the metric:

k
d(x,y) = inf {Z d(xi,yi)lx1 € X,yi ~ Xi+1,yk € )7}- (1)
i=1

k<K

» We also reduce computation time using partial labelings,
e.g. from an initial branch matching.

» Finding efficient approximations and heuristics is an extremely
important — and interesting — problem!

maden@diku dk



|—Statistical properties

Conclusion

» We build a shape space framework for attributed trees.
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L Statistical properties

Conclusion

» We build a shape space framework for attributed trees.

» We study two natural metrics on the shape space — one, which

turns out to be TED, and one, which is new — called QED.
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L Statistical properties

Conclusion

» We build a shape space framework for attributed trees.

» We study two natural metrics on the shape space — one, which
turns out to be TED, and one, which is new — called QED.

» Using geometry we explain why TED is not great for doing
statistics.
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LStatistical properties

Conclusion

» We build a shape space framework for attributed trees.

» We study two natural metrics on the shape space — one, which
turns out to be TED, and one, which is new — called QED.

» Using geometry we explain why TED is not great for doing
statistics.

» We show that QED has the types of properties that we need
for doing statistics — for instance, we can compute the world's
most well-defined average trees!

maden®@diku dk



LStatistical properties

Conclusion

» We build a shape space framework for attributed trees.

» We study two natural metrics on the shape space — one, which
turns out to be TED, and one, which is new — called QED.

» Using geometry we explain why TED is not great for doing
statistics.

» We show that QED has the types of properties that we need
for doing statistics — for instance, we can compute the world's
most well-defined average trees!

» We compute average trees for various types of data.

maden®@diku dk



|—Statistical properties

Open questions

» Statistical properties: How to analyze data variation? PCA
analogues and so on?
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Open questions

» Statistical properties: How to analyze data variation? PCA
analogues and so on?

» Can we change the edgewise distance function?
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L Statistical properties

Open questions

» Statistical properties: How to analyze data variation? PCA
analogues and so on?

» Can we change the edgewise distance function?

» Can we generalize to graphs?

o F
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L Statistical properties

Open questions

v

Statistical properties: How to analyze data variation? PCA
analogues and so on?

v

Can we change the edgewise distance function?

v

Can we generalize to graphs?

v

Can we find efficient algorithms
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LStatistical properties

Open questions

v

Statistical properties: How to analyze data variation? PCA
analogues and so on?

v

Can we change the edgewise distance function?

v

Can we generalize to graphs?

v

Can we find efficient algorithms

v

Large-scale statistical studies on medical data

» Geometry-based biomarkers for disease (COPD)?
» Anatomical modeling?

maden@diku dk
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