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Introduction

Airway shape modeling: the problem

Motivation

What does the average human airway tree look like?

Nobody knows! There are no tools available for doing statistics on
airway trees!
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Introduction

Airway shape modeling: the problem

Motivation

The airway tree can be described as a combination of
I tree topology (connectivity / combinatorics)
I geometry (branch shape)
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Introduction

Airway shape modeling: the problem

Motivation

Tree:
I vertices
I edges connecting

vertices
I root
I order
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Introduction

Airway shape modeling: the problem

Motivation
So why don’t you just collect the edge information in a long vector
and compute averages? Consider the rather similar trees:

which are represented by the rather different vectors

(a, b, c , d , e) and (a, d , f , e, c).

We need methods which can gracefully handle topological
differences.
madsn@diku.dk



Introduction

Comparing trees

Tree distance example: Tree edit distance (TED)

I TED is a classical, algorithmic distance
I tree-space with TED is a ”funny space”
I dist(T1, T2) is the minimal total cost of changing T1 into T2

through three basic operations:
I Remove edge, add edge, deform edge.
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Introduction

Comparing trees

Tree distance example: Tree edit distance (TED)

I Almost all geodesics between pairs of trees are non-unique
(infinitely many).

I Then what is the average of two trees? Many!
I TED is not suitable for statistics.
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Introduction

Comparing trees

Tree distance example: Tree edit distance (TED)

Most state-of-the-art approaches to distance measures and
statistics on tree- and graph-structured data are based on TED!

I Wang and Marron: Object oriented data analysis: sets of trees. Annals of
Statistics 35 (5), 2007.

I Ferrer, Valveny, Serratosa, Riesen, Bunke: Generalized median graph
computation by means of graph embedding in vector spaces. Pattern
Recognition 43 (4), 2010.

I Riesen and Bunke: Approximate Graph Edit Distance by means of Bipartite
Graph Matching. Image and Vision Computing 27 (7), 2009.

I Trinh and Kimia, Learning Prototypical Shapes for Object Categories. CVPR
workshops 2010.
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Introduction

Comparing trees

Tree distance example: Tree edit distance (TED)
The problems can be ”solved” by choosing specific geodesics.
OBS! Geometric methods can no longer be used for proofs, and
one risks choosing problematic paths.

Figure: Trinh and Kimia (CVPR workshops 2010) compute average shock
graphs using TED with the simplest possible choice of geodesics.
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Modeling trees – the ideal model

Modeling trees – the ideal model
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Modeling trees – the ideal model

The model we are looking for

I a geodesic metric structure, with good uniqueness properties

I geodesics corresponding to natural deformations
I averages and modes of variation, with good uniqueness

properties
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The model we are looking for

I a geodesic metric structure, with good uniqueness properties
I geodesics corresponding to natural deformations

I averages and modes of variation, with good uniqueness
properties
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The model we are looking for

I a geodesic metric structure, with good uniqueness properties
I geodesics corresponding to natural deformations
I averages and modes of variation, with good uniqueness
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Modeling trees – the ideal model

The model we are looking for

Figure: Tolerance of structural noise.
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Building a space of tree-like shapes

Building a space of tree-like shapes 1

1A. Feragen, F. Lauze, P. Lo, M. de Bruijne, M. Nielsen, ACCV2010
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Building a space of tree-like shapes

Tree representation

How to represent tree-like shapes mathematically?
Tree-like (pre-)shape = pair (T , x)

I T = (V ,E , r , <) rooted, ordered/planar binary tree,
describing the tree topology (combinatorics)

I x ∈
∏

e∈E A a product of points in attribute space A
describing edge shape
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Building a space of tree-like shapes

Tree representation

We are allowing collapsed edges, which means that
I we can represent higher order vertices
I we can represent trees of different sizes using the same

combinatorial tree T

(dotted line = collapsed edge = zero/constant attribute)
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Building a space of tree-like shapes

Tree representation

madsn@diku.dk

Edge representation through landmark points:
Edge shape space is (Rd )n, d = 2, 3.



Building a space of tree-like shapes

The space of tree-like preshapes

Fix a maximal combinatorial T . We use a finite tree; could
reformulate for infinite trees.

Definition
Define the space of tree-like pre-shapes as the product space∏

e∈E

(Rd )n

where (Rd )n is the edge shape space.
This is just a space of pre-shapes.
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Building a space of tree-like shapes

From pre-shapes to shapes

Many shapes have more than one representation
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Building a space of tree-like shapes

From pre-shapes to shapes

Not all shape deformations can be recovered as natural paths in
the pre-shape space:

madsn@diku.dk



Building a space of tree-like shapes

Shape space definition

I Start with the pre-shape space X =
∏

e∈E (Rd )n.

I Define an equivalence ∼ by identifying points in X that
represent the same tree-shape.

I This corresponds to identifying, or gluing together, subspaces
{x ∈ X |xe = 0 if e /∈ E1} and {x ∈ X |xe = 0 if e /∈ E2} in X .
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Building a space of tree-like shapes

Shape space definition

I Define the space of ordered (planar) tree-like shapes
X̄ = X/ ∼.

quotient

I For the landmark point shape space this is just a folded
Euclidean space.
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Geometries on the space of trees

Geometries on the space of trees
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Geometries on the space of trees

Shape space metric definition
Given a metric d on the vector space X =

∏
e∈E (Rd )n we define

the quotient pseudometric d̄ on the quotient space X̄ = X/ ∼ by
setting

d̄(x̄ , ȳ) = inf

{
k∑

i=1

d(xi , yi )|x1 ∈ x̄ , yi ∼ xi+1, yk ∈ ȳ

}
. (1)

Theorem
The quotient pseudometric d̄ is a metric on X̄ .
madsn@diku.dk



Geometries on the space of trees

Shape space metric definition

madsn@diku.dk

Define two metrics d1 and d2 on X , induced by two different
product norms on the product of edge shape spaces
X =

∏
e∈E (Rd )n:

l1 norm: d1(x , y) =
∑

e∈E ‖xe − ye‖
l2 norm: d2(x , y) =

√∑
e∈E ‖xe − ye‖2

There are metrics d̄1 and d̄2 on X̄ induced by d1 and d2.



Geometries on the space of trees

Shape space metric definition

It turns out that d̄1 is an old friend; namely the well-known Tree
Edit Distance metric:

Theorem
The metric d̄1 is the TED metric on trees that ”fit” into X̄ .

Terminology
Refer to d̄2 as the QED (Quotient Euclidean Distance) metric.
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Geometries on the space of trees

Geodesics in metric spaces

Theorem
Let d̄ = d̄1 or d̄2. Then (X̄ , d̄) is a contractible, complete, proper
geodesic space.
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Geometries on the space of trees

How does the QED fulfill our wishes?

It defines a geodesic metric space

Airway tree-space
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Geometries on the space of trees

How does the QED fulfill our wishes?

Example of a QED geodesic deformation:

Play movie

Note the tolerance of topological differences and natural
deformation.
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Geometries on the space of trees

How does the QED fulfill our wishes?

Noise tolerance:

Sequences of trees with disappearing branches will converge
towards trees without the same branch.
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Geometries on the space of trees

How does the QED fulfill our wishes?

I We’re doing OK so far!
I Let’s return to geometry to look for uniqueness and statistical

properties

madsn@diku.dk



Geometries on the space of trees

Curvature in metric spaces

I A CAT (0) space is a metric space in which geodesic triangles
are ”thinner” than for their comparison triangles in the plane;
that is, d(x , a) ≤ d(x̄ , ā).

I A space has non-positive curvature if it is locally CAT (0).
I (Similarly define curvature bounded by κ by using comparison

triangles in hyperbolic space or spheres of curvature κ.)
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I A space has non-positive curvature if it is locally CAT (0).

I (Similarly define curvature bounded by κ by using comparison
triangles in hyperbolic space or spheres of curvature κ.)

madsn@diku.dk



Geometries on the space of trees

Curvature in metric spaces

I A CAT (0) space is a metric space in which geodesic triangles
are ”thinner” than for their comparison triangles in the plane;
that is, d(x , a) ≤ d(x̄ , ā).
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Geometries on the space of trees

Curvature in metric spaces

Example

quotient

Figure: Left: CAT (0) space. Right: With A = RN and the QED metric;
locally CAT (0) except for at the origin.

Theorem (see e.g. Bridson-Haefliger)
Let (X , d) be a CAT (0) space; then all pairs of points have a
unique geodesic joining them. The same holds locally in CAT (κ)
spaces, κ 6= 0.
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Geometries on the space of trees

Curvature of shape space

madsn@diku.dk

Theorem
I Consider (X̄ , d̄2), shape space with the QED metric.
I At generic points, this space has non-positive curvature.
I Its geodesics are locally unique at generic points.
I At non-generic points, the curvature is unbounded.

Theorem
I Consider (X̄ , d̄1), shape space with TED.
I It has nowhere locally unique geodesics.
I Its curvature is everywhere unbounded.



Geometries on the space of trees

Curvature of shape space
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Theorem
I Consider (X̄ , d̄2), shape space with the QED metric.
I At generic points, this space has non-positive curvature.
I Its geodesics are locally unique at generic points.
I At non-generic points, the curvature is unbounded.

Theorem
I Consider (X̄ , d̄1), shape space with TED.
I It has nowhere locally unique geodesics.
I Its curvature is everywhere unbounded.



Geometries on the space of trees

3D trees2

So far we talked about ordered (planar) tree-like shapes; what
about unordered (spatial) tree-like shapes?

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to
TPAMI
madsn@diku.dk



Geometries on the space of trees

3D trees2

I Planar shapes have a given edge order.
I Unordered trees: Give a random order
I Denote by G the group of reorderings of the edges that do

not alter the connectivity of the tree.
I The space of spatial/unordered trees is the space ¯̄X = X̄/G
I Give ¯̄X the quotient pseudometric ¯̄d .
I ¯̄d(¯̄x , ¯̄y) corresponds to considering all possible orders on ¯̄y and

choosing the order that minimizes ¯̄d(¯̄x , ¯̄y).

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to
TPAMI
madsn@diku.dk



Geometries on the space of trees

3D trees2

Theorem
I For the quotient pseudometric ¯̄d induced by either d̄1 or d̄2,

the function ¯̄d is a metric and ( ¯̄X , ¯̄d) is a contractible,
complete, proper geodesic space.

I At non-generic points, ( ¯̄X , ¯̄d2) has non-positive curvature.

I On the other hand, ( ¯̄X , ¯̄d1) has everywhere unbounded
curvature.

I ...so everything we proved for ordered trees, still holds.

2A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to
TPAMI
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Statistical properties

Statistical properties 3

3A. Feragen, S. Hauberg, M. Nielsen, F. Lauze, ICCV 2011 (to appear)
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Statistical properties

Averages in the QED metric

madsn@diku.dk

Endow X̄ with the QED metric d̄2. For a generic point x̄ ∈ X̄ ,
there is a radius rx̄ s.t sets {xi}si=1 contained in B(x̄ , rx̄):

Theorem
...have unique means, defined as argmin

∑
d(x , xi )

2.



Statistical properties

Averages in the QED metric
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Endow X̄ with the QED metric d̄2. For a generic point x̄ ∈ X̄ ,
there is a radius rx̄ s.t sets {xi}si=1 contained in B(x̄ , rx̄):

Theorem
...have unique circumcenters, defined as the center of the
smallest sphere containing all the {xi}si=1.



Statistical properties

Averages in the QED metric

madsn@diku.dk

Endow X̄ with the QED metric d̄2. For a generic point x̄ ∈ X̄ ,
there is a radius rx̄ s.t sets {xi}si=1 contained in B(x̄ , rx̄):

Theorem (Billera, Vogtmann, Holmes)
...have unique centroids, defined by induction on |S | = n:

I If |S | = 2, then c(S) is the midpoint of the geodesic
between the two elements of S .

I If |S | = n > 2 and we have defined c(S ′) for all S ′ with
|S ′| < n, then denote by c1(S) the set
{c(S ′)|S ′ ⊂ S , |S ′| = n − 1} and denote by
ck(S) = c1(ck−1(S)) when k > 1.

I If ck(S)→ p for some p ∈ X̄ as k →∞, then c(S) = p
is the centroid of S .



Statistical properties

Averages in the QED metric

Synthetic data:

Figure: A small set of synthetic planar tree-shapes.

Figure: Left: Mean shape. Right: Centroid shape.

These choices of ”average” give rather similar results.
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Statistical properties

Averages in the QED metric
Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar
tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b)
The mean vascular tree.
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Statistical properties

Airway shape modeling

Figure: Left figure borrowed from Tschirren et al. 4

I Combinatorial structure of airway tree is somewhat fixed, for
anatomical reasons.

I There are topological differences, making both global and
local comparison difficult.

4Tschirren et al: Matching and anatomical labeling of human airway tree,
TMI 2005
madsn@diku.dk



Statistical properties

Airway shape modeling

Experiment 1: Compute approximate (k ≤ 3) geodesic distances
between six airways, two images from each of three different
people. We can clearly distinguish patients: 4

4A. Feragen, P. Lo, M. de Bruijne, F. Lauze and M. Nielsen, ACCV2010.
madsn@diku.dk



Statistical properties

Airway shape modeling

Experiment 2: Combine geodesic deformations with a voting
scheme to induce anatomical branch labeling on 20 noisy airways
from 15 subjects. Average correct labeling rate of 83%. 4

Figure: Correct labeling quotas for the different airway trees.

4A. Feragen P. Lo, V. Gorbunova, A. Dirksen, J. Reinhardt and M. de
Bruijne, submitted.
madsn@diku.dk



Statistical properties

Airway shape modeling
Experiment 4: The mean upper airway tree4

Figure: A set of upper airway tree-shapes along with their mean
tree-shape.

4A. Feragen, S. Hauberg, M. Nielsen and F. Lauze, ICCV 2011
madsn@diku.dk



Statistical properties

Airway shape modeling
Experiment 5:

Figure: A set of upper airway tree-shapes (projected).4

QED TED

Figure: The QED and TED (algorithm by Trinh and Kimia) means.

4with P. Lo, M. de Bruijne, M. Nielsen, F. Lauze, submitted to TPAMI
madsn@diku.dk



Statistical properties

Computational issues

madsn@diku.dk



Statistical properties

Computational issues
Recall the definition of the distance between two tree-shapes:

d̄(x̄ , ȳ) = inf

{
k∑

i=1

d(xi , yi )|x1 ∈ x̄ , yi ∼ xi+1, yk ∈ ȳ

}
. (1)

This suggests having to consider infinitely many combinations of
paths between different equivalence classes of tree-shapes.
madsn@diku.dk



Statistical properties

Computational issues

I Recall similarity with TED: computation for unordered trees is
NP complete.

I TED has the following property:

d(T1,T2) = d(T1,1,T2,1) + d(T1,2,T2,2).
I This property is used in many TED algorithms.
I The same property does not hold for the QED metric.
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Statistical properties

Computational issues
I As a consequence, we expect exact computation of the QED

metric to be NP-complete. At present, we approximate by
bounding the number k in the definition of the metric:

d̄(x̄ , ȳ) = inf
k≤K

{
k∑

i=1

d(xi , yi )|x1 ∈ x̄ , yi ∼ xi+1, yk ∈ ȳ

}
. (1)

I We also reduce computation time using partial labelings,
e.g. from an initial branch matching.

trachea

RMB LMB

Intermediate

RUL

BronchInt

LUL

Middle+
lower 
lobe

Upper 
lobe

Upper lobe

Lower 
lobe

I Finding efficient approximations and heuristics is an extremely
important – and interesting – problem!
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Statistical properties

Conclusion

I We build a shape space framework for attributed trees.

I We study two natural metrics on the shape space – one, which
turns out to be TED, and one, which is new – called QED.

I Using geometry we explain why TED is not great for doing
statistics.

I We show that QED has the types of properties that we need
for doing statistics – for instance, we can compute the world’s
most well-defined average trees!

I We compute average trees for various types of data.
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Statistical properties

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I Can we change the edgewise distance function?
I Can we generalize to graphs?
I Can we find efficient algorithms
I Large-scale statistical studies on medical data

I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?

madsn@diku.dk



Statistical properties

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I Can we change the edgewise distance function?

I Can we generalize to graphs?
I Can we find efficient algorithms
I Large-scale statistical studies on medical data

I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?

madsn@diku.dk



Statistical properties

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I Can we change the edgewise distance function?
I Can we generalize to graphs?

I Can we find efficient algorithms
I Large-scale statistical studies on medical data

I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?

madsn@diku.dk



Statistical properties

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I Can we change the edgewise distance function?
I Can we generalize to graphs?
I Can we find efficient algorithms

I Large-scale statistical studies on medical data
I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?

madsn@diku.dk



Statistical properties

Open questions

I Statistical properties: How to analyze data variation? PCA
analogues and so on?

I Can we change the edgewise distance function?
I Can we generalize to graphs?
I Can we find efficient algorithms
I Large-scale statistical studies on medical data

I Geometry-based biomarkers for disease (COPD)?
I Anatomical modeling?

madsn@diku.dk


	Introduction
	Airway shape modeling: the problem
	Comparing trees

	Modeling trees – the ideal model
	Building a space of tree-like shapes
	Geometries on the space of trees
	Statistical properties

