Geodesics in CAT(0) Cubical Complexes

Federico Ardila (SFSU), federico@math.sfsu.edu Megan Owen (UC Berkeley), maowen@berkeley.edu Seth Sullivant (NCSU), smsulli2@ncsu.edu

Ardila, Owen, and Sullivant were partially supported by the U.S. National Science Foundation under awards DMS-0635449, DMS-0801075, DMS-0840795, DMS-0954865, and DMS-0956178. Ardila was also partially supported by an SFSU Presidential Award and Sullivant was also partially supported by the David and Lucille Packard Foundation.

Cubical Complexes

- cubical complex = polyhedral complex of unit cubes + all attaching maps are injective
- metric on cubical complex induced by Euclidean L² metric on each cube

CAT(0)

3

- non-positive curvature (NPC) = triangles are at least as thin as in Euclidean space
- global non-positive curvature = all triangles are at least as thin as in Euclidean space = CAT(0)

CAT(0) ⇒ unique shortest paths (geodesics)

CAT(0) Cubical Complexes

- Theorem (Gromov, 1987):
 - A cubical complex is CAT(0)
 - ⇔ it is simply connected and the link of any vertex is a flag simplicial complex
 - ⇔ it is simply connected and if a vertex is incident to
 K edges, any pair of which specify a square, then
 these K edges also specify a K-dimensional cube.

Problem

Given a CAT(0) cubical complex and two points x and y, find the geodesic from x to y.

Applications:

(Ghrist and Peterson, 2007) reconfigurable systems

space of phylogenetic trees

Solution

- Coordinatize the CAT(0) complex: Establish a bijection with posets with inconsistent pairs.
 Coordinates = poset elements
- 2. Reduce problem to subcomplex containing geodesic and find starting cube sequence.
- 3. Find geodesic through this cube sequence.
- If possible, improve cube sequence and repeat from 3.

1. Poset Representation

- goal: represent cube complex as a poset to induce coordinate system
- associate each cube edge with the perpendicular "hyperplane" that bisects it
- hyperplanes act as coordinates

- fix a vertex v
- for each hyperplane, label the vertex closest to v on the opposite side of the hyperplane from v

- labeled vertices form poset with inconsistent pairs:
 - u < w ⇔ from v, must cross hyperplane u to reach vertex w
 - (p,q) is an inconsistent pair ⇔ no geodesic from v crosses both hyperplanes p and q

Theorem (Ardila, Owen, Sullivant): Fixing a vertex, there is a bijection between CAT(0) cube complexes and posets with inconsistent pairs.

vertices in cube complex order ideals with no inconsistent pairs in poset

2. Reduce Poset

delete cubes that could not contain the geodesic

10

2. Starting Cube Sequence

 choose a valid starting cube sequence based on x and y

3. Touring Problem

- rephrase finding the geodesic through the chosen cube sequence as a convex optimization problem (= touring problem)
- new problem solvable as a second order cone problem in polynomial time (Polishchuk and Mitchell, 2005)

Find points in regions R₁ and R₂ that minimize length of path from x to y.

4. Improve the Path

4. Can geodesic through the current cube sequence be improved?
If yes, get a new cube sequence; go to step 3. If no, then done.

No improvement possible.

Path will be shorter if passes through white cube.

 can improve path iff there exists a cube giving a "short-cut" at any point where the path bends

 a cube exists ⇔its hyperplanes form an antichain in the cubical complex poset.

Complexity

- Coordinatize the CAT(0) complex: Establish a bijection with posets with inconsistent pairs.
 Coordinates = poset elements polynomial
- 2. Reduce problem to subcomplex containing geodesic and find starting cube sequence.
- 3. Find geodesic through this cube sequence.
- 4. If possible, improve cube sequence and repeat from 3.

unknown: # of iterations in general

References

- F. Ardila, M. Owen and S. Sullivant. Geodesics in CAT(0) Cubical Complexes. Accepted Advances in Applied Mathematics, 2011. http://arxiv.org/abs/0907.3942
- R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in Applied Mathematics, 38:302-323, 2007.
- 3. M. Gromov. Hyperbolic groups. In Essays in group theory, v. 8 of Math. Sci. Res. Inst. Publ., pg. 75-263. Springer, 1987.
- 4. M. Owen and S. Provan. A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Trans. Computational Biology and Bioinformatics, 8:2-13, 2011.
- V. Polishchuk and J.S.B. Mitchell. Touring convex bodies a conic programming solution. 17th Canadian Conference of Computational Geometry, pg. 101-104, 2005.