Enumeration of the Distinct Shuffles of Permutations

Agebraic Combinatorixx

Camillia Smith Barnes • Department of Mathematical Sciences • Sweet Briar College

Research completed while affiliated with • Department of Mathematics • Harvard University

Summary
A shuffle of two words is a word obtained by concatenating the two original words in either order and then sliding any letters from the second word back past letters of the first word, in such a way that the letters of each original word remain spelled out in their original relative order. Examples of shuffles of the words 1234 and 5678 are, for instance, 15236784 and 51236748.
In this paper, we enumerate the distinct shuffles of two permutations of any two lengths, where the permutations are written as words in the letters $1,2,3, \ldots, m$ and $1,2,3, \ldots, n$, respectively.

Shuffles of Words

Definition 1.1. A word is defined to be a finite string of elements (known as letters) of a given set (known as an alphabet); in general repetitions of letters are allowed.
Definition 1.2. We define the length of a word $u=a_{1} \ldots a_{m}$ to be $\mathfrak{I}(u)=m$ and the support of u to be $\operatorname{supp}(u)=\left\{a_{1}, \ldots, a_{m}\right\}$.
Definition 1.3. A subword x of a word u is defined to be a word obtained by omitting a (possibly empty) subset of the letters of u.
Example 1.4. For the alphabet $\mathcal{A}=\{1,2,3,5,7\}$, the words $u=25372$ and $v=123$ have supports $\operatorname{supp}(u)=\{2,3,5,7\}$ and $\operatorname{supp}(v)=\{1,2,3\}$, and lengths $\mathrm{I}(u)=5$ and $\mathrm{I}(v)=3$. Two subword of u are 232 and 537
Definition 1.5. Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$ in some alphabet \mathcal{A}, we obtain a shuffle of u and v by concatenating u and v to get

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

and then permuting letters in such a way to achieve

$$
w=c_{\rho(1)} c_{\rho(2)} \ldots c_{\rho(m+n)},
$$

for some permutation $\rho \in \mathfrak{S}_{m+n}$ on $m+n$ letters satisfying the order-preserving conditions

$$
\begin{equation*}
\rho^{-1}(1)<\rho^{-1}(2)<\cdots<\rho^{-1}(m) \tag{1}
\end{equation*}
$$

and

$$
\rho^{-1}(m+1)<\rho^{-1}(m+2)<\cdots<\rho^{-1}(m+n)
$$

The Main Question

u with v

Assuming and n to be the lengths of u and v respectively note that if $\operatorname{supp}(u) \cap \operatorname{supp}(v)=\emptyset$ then there are $\binom{m+n}{m}$ distinct shuffles (all shuffles are distinct)
We resolve this question for the case where the words u and v are assumed to be permutatio words. In this case, the supports are not necessarily disjoint.
Motivating the search to count shuffles of permutations is the beautiful result that the distin Motivating the search to count shufles of permutations is the beautifur result
shuffes of the identity permutation with itself are counted by the Catalan numbers.

The Identity Permutation

Proposition 3.1. The number of distinct shuffes of the identity permutation on n letters with itself is the $n^{\text {th }}$ Catalan number C_{n}, that is

$$
\begin{equation*}
\# s \mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right)=\frac{1}{n+1}\binom{2 n}{n} . \tag{3}
\end{equation*}
$$

Example 3.2. The $C_{3}=5$ distinct shuffles of 123 with itself are

112233	112323	121233	121323	123123

Proposition 3.3. For $m \leq n$, the number of distinct shuffles of the identity permutation on m letters with the identity permutation on n letters is given by

$$
\begin{equation*}
\# \mathfrak{s h}\left(\mathrm{id}_{m}, \mathrm{id}_{n}\right)=\frac{(n+m)!\cdot(n-m+1)}{(n+1)!\cdot m!} . \tag{4}
\end{equation*}
$$

The Reverse Permutation

Definition 4.1. Let the reverse permutation word $n, n-1, \ldots, 2,1$ be denoted by rev ${ }_{n}$
Example 4.2. For instance, rev $_{4}=4321$.
The special case of finding the number of distinct shuffles of the reverse permutation with the dentity permutation illustrates the idea used to solve the general case: we determine what multiplicities can occur, then subtract the number of duplicates from the total number of shuffles with multiplicity.
The following result can be shown via a bijective proof

Propostion 43

$$
\begin{equation*}
\# \operatorname{shh}^{\left(\mathrm{id}_{m}, \mathrm{rev}_{n}\right)} \mathbf{=}\binom{m+n}{m}-\binom{m+n-2}{m-1} \tag{5}
\end{equation*}
$$

Example 4.4. The 14 distinct shuffles of the words 123 and 321 are as follows, with their multiplicities in parentheses

| $123321(2)$ | $132321(1)$ | $312321(1)$ | 321123 (2) |
| :--- | :--- | :--- | :--- | :--- |
| $123231(1)$ | $132213(2)$ | $312213(2)$ | $321231(1)$ |
| $123213(1)$ | $132231(2)$ | $312231(2)$ | $321213(1)$ |
| | $132123(1)$ | $312123(1)$ | |

The General Case

Fact 5.1. For any $m \leq n$ and any $\alpha \in \mathfrak{S}_{m}, \beta \in \mathfrak{S}_{n}$, we have $\# \mathfrak{s h}(\alpha, \beta)=\# \mathfrak{s h}\left(\mathrm{id}_{m},(\bar{\alpha})^{-1} \circ \beta\right)$, where $\bar{\alpha} \in \mathfrak{S}_{n}$ is the natural extension of α to a permutation on n letter
The following proposition is key to solving the general case:
 for some nonnegative integer

It will now be possible to derive the main theorem (Theorem 6.1, next column) by applying the principle of Inclusion-Exclusion.
Examples of calculations using the theorem include $\# \mathfrak{s h}\left(\mathrm{id}_{3}, 321\right)=14, \# 5 \mathfrak{s h}($ id 3,4321$)=25$ $\left.\# \mathfrak{s h}^{(\mathrm{id} 2} 2,3421\right)=11, \# \mathfrak{s h}(2431,1432)=44, \#$ sh $\left.^{(\mathrm{id}} 6,126354\right)=374, \# \mathfrak{s h}\left(\mathrm{id}_{8}, 4321\right)=375$ $\# \mathfrak{s h}(\mathrm{id} 8,67812345)=10930, \# \mathfrak{s h}(\mathrm{id} 8,43215678)=3976$, and $\# \operatorname{sh}^{\left(\text {id }_{10}, 214365\right)}=4746$.

Main Theorem

he following theorem provides a formula that can be programmed into a computer algebra package in order to calculate the number of distinct shuffles of two permutations. Maple 11.0 unning on a 2008 laptop can quickly handle calculations up to length 13
For example, $\#$ sh (id d $\left._{13}, 78910111213123456\right)=10104590$.
heorem 6.1 F any $\alpha \in \mathfrak{S}_{\text {an }}$ and $\beta \in \mathfrak{S}_{\text {, with }} m \leq n$ let $\sigma=\bar{\alpha}^{-1} \beta$ where $\bar{\alpha} \in \mathfrak{S}$, is the natural extension of a. Then

$$
\begin{aligned}
& \left.\# s \mathfrak{h}(\alpha, \beta)=\# \text { sh }_{\text {(id }}^{m}, \sigma\right) \\
& =\sum_{k=0}^{\left[\frac{m}{2}\right]} \sum_{a \in A_{m}(k)}(-1)^{k(k)} \prod_{r=0}^{k} \operatorname{det} f_{m}^{\sigma}\left(a_{2 r r}, a_{2 r+1}\right) \prod_{s=1}^{k} \operatorname{det} \Lambda^{\sigma^{\sigma}\left(a_{2 s-1}, a_{2 s}\right)}
\end{aligned}
$$

$$
\mathbf{A}_{m}(k)=\left\{\left\{0=a_{0}<a_{1}<\cdots<a_{2 k}<a_{2 k+1}=m+1\right\} \mid a_{i} \in \mathbb{N}\right\}
$$

and

$$
h(\mathbf{a})=m-\sum_{t=1}^{k}\left(a_{2 t}-a_{2 t-1}\right),
$$

d where we defnue the matrices.

$$
\boldsymbol{f}_{m}^{\sigma}(c, d)=\left[{ }_{m}^{f}(i, j+1)\right]_{c \leq i, j \leq d-1}
$$

with

nd the matrices
with

$$
\omega^{\sigma}(i, j)= \begin{cases}0, & i-j>1 \text { or } \sigma^{-1}(i+1) \neq \sigma^{-1}(i)+1 \\ -1, & i-j=1 \text { and } \sigma^{-1}(i+1)=\sigma^{-1}(i)+1 \\ C_{j-i}, & i \leq j \text { and } \sigma^{-1}(i+1)=\sigma^{-1}(i)+1\end{cases}
$$

$$
C_{j-i}=\frac{1}{j-i+1}\binom{2(j-i)}{j-i} \text {, the }(j-i)^{\text {th }} \text { Catalan number }
$$

Acknowledgments
would like to thank my advisor, Richard Stanley, for his invaluable guidance and for susgesting such an enioyable problem. I am also grateful to Lauren Williams and Thomas Lam for their willingness to help me improve various Iratis of this paper. Moreover, I am very thankful for the enenerous support provided me by the National Science
Foundation Graduate Research Fellowship and the AT\& Labs Fellowship Program.

Selected References

W.F. Doran IV, Shuffling lattices, J. Combinatorial Theory Ser. A 66 (2002), 1-26.
R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), 1-25
. Greene, Posets of shuffes, J. Combinatorial Theory Ser. A 47 (1988), 191-206.
. Hersh, Two generalizations of posets of shuffles, J. Combinatorial Theory Ser. A 97 (2002), 1-26
e. Reutenauer, Free Lie Algebras, Clarendon Press, 1993,
R. Simion \& R.P. Stanley, Flag-symmetry of the poset of shuffles and a local action of the symmertic group, Discrete Math. 204 (1999), 369-396.
h. R.P. Stanley, Generalized riffle shuffes and quasisymmetric cunctions, Ann. Comb. 5 (3-4) (2001). 479-491

